第14章.勾股定理知识点与常见题型总结

勾股定理复习

一.知识归纳 1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么a2b2c2 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:

方法一:4SS正方形EFGHS正方形ABCD,4

D

E

b

A

c

B

b

12

ab(ba)c

2

2

,化简可证.

a

c

b

C

a

b

c

cb

a

a

方法二:

四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为S4大正方形面积为S(ab)2a22abb2 所以a2b2c2

方法三:S梯形

A

a

12

(ab)(ab),S梯形2SADESABE2

12ab

12c

2

12

abc2abc

22

,化简得证

Db

B

b

EaC

3.勾股定理的适用范围

勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用

①已知直角三角形的任意两边长,求第三边

在ABC中,C90

,则c

,b

,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理

如果三角形三边长a,b,c满足a2b2c2,那么这个三角形是直角三角形,其中c为斜边

①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和a2b2与较长边的平方c2作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222222

abc,时,以a,b,c为三边的三角形是钝角三角形;若abc,时,以a,b,c为三边的三角形是锐角三角形;

②定理中a,b,c及a2b2c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2c2b2,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边

③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数

①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2b2c2中,a,b,c为正整数时,称a,b,c为一组勾股数

②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n组勾股数: n21,2n,n21(n2,

n

为正整数);

2n1,2n22n,2n22n1(n为正整数)

mn,2mn,mn

2

2

2

2

(mn,

m

,n为正整数)

7.勾股定理的应用

勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用

勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用

勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:

C

C

A

B

ADBBD

A

C

BD

A

题型一:直接考查勾股定理 例1.在ABC中,C90.

⑴已知AC6,BC8.求AB的长 ⑵已知AB17,AC15,求BC的长

分析:直接应用勾股定理a2b2c2 题型二:应用勾股定理建立方程

例2.⑴在ABC中,ACB90,AB5cm,BC3cm,CDAB于D,CD= ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm,斜边长为13cm,则这个三角形的面积为 分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解

(1)AC⑵设两直角边的长分别为3k,4k⑶设两直角边分别为

ab60S

(3k)(4k)15a

2

2

4 CD

2

ACBC

2.4 AB

,k3,S54

,b,则ab17,a2b2289,可得

cm

2

12

ab30

例3.如图RtABC,C90AC3,BC4,分别以各边为直径作半圆,求阴影部分面积

答案:6

题型三:实际问题中应用勾股定理

例5.如图有两棵树,一棵高8cm,另一棵高2梢飞到另一棵数的树梢,至少飞了

cmm

,两树相距8

cm

,一只小鸟从一棵树的树

A

EB

DC

分析:根据题意建立数学模型,如图AB8垂足为E,则AE6m,DE8m 在Rt

ADE中,由勾股定理得AD

m

,CD2

m

,BC8

m

,过点D作DEAB,

10

答案:10m

题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形 例6.已知三角形的三边长为a,b,c,判定ABC是否为Rt ①a1.5,b2,c2.5 ②a

54

,b1,c

23

解:①a2b21.52226.25,c22.526.25 ABC是直角三角形且C90

②b2c2

139

,a2

2516

,b2c2a2ABC不是直角三角形

例7.三边长为a,b,c满足ab10,ab18,c8的三角形是什么形状? 解:此三角形是直角三角形. 理由:

题型五:勾股定理与勾股定理的逆定理综合应用

例8.已知ABC中,AB13cm,BC10cm,BC边上的中线AD12cm,求证:ABAC

证明:

A

BAD

DC

为中线,BDDC5

cm

在ABD中,AD2BD2169,AB2169AD2BD2AB2,

222

ADB90,ACADDC169,AC13cm,ABAC

勾股定理复习

一.知识归纳 1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么a2b2c2 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:

方法一:4SS正方形EFGHS正方形ABCD,4

D

E

b

A

c

B

b

12

ab(ba)c

2

2

,化简可证.

a

c

b

C

a

b

c

cb

a

a

方法二:

四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为S4大正方形面积为S(ab)2a22abb2 所以a2b2c2

方法三:S梯形

A

a

12

(ab)(ab),S梯形2SADESABE2

12ab

12c

2

12

abc2abc

22

,化简得证

Db

B

b

EaC

3.勾股定理的适用范围

勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用

①已知直角三角形的任意两边长,求第三边

在ABC中,C90

,则c

,b

,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理

如果三角形三边长a,b,c满足a2b2c2,那么这个三角形是直角三角形,其中c为斜边

①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和a2b2与较长边的平方c2作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222222

abc,时,以a,b,c为三边的三角形是钝角三角形;若abc,时,以a,b,c为三边的三角形是锐角三角形;

②定理中a,b,c及a2b2c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2c2b2,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边

③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数

①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2b2c2中,a,b,c为正整数时,称a,b,c为一组勾股数

②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n组勾股数: n21,2n,n21(n2,

n

为正整数);

2n1,2n22n,2n22n1(n为正整数)

mn,2mn,mn

2

2

2

2

(mn,

m

,n为正整数)

7.勾股定理的应用

勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用

勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用

勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:

C

C

A

B

ADBBD

A

C

BD

A

题型一:直接考查勾股定理 例1.在ABC中,C90.

⑴已知AC6,BC8.求AB的长 ⑵已知AB17,AC15,求BC的长

分析:直接应用勾股定理a2b2c2 题型二:应用勾股定理建立方程

例2.⑴在ABC中,ACB90,AB5cm,BC3cm,CDAB于D,CD= ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm,斜边长为13cm,则这个三角形的面积为 分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解

(1)AC⑵设两直角边的长分别为3k,4k⑶设两直角边分别为

ab60S

(3k)(4k)15a

2

2

4 CD

2

ACBC

2.4 AB

,k3,S54

,b,则ab17,a2b2289,可得

cm

2

12

ab30

例3.如图RtABC,C90AC3,BC4,分别以各边为直径作半圆,求阴影部分面积

答案:6

题型三:实际问题中应用勾股定理

例5.如图有两棵树,一棵高8cm,另一棵高2梢飞到另一棵数的树梢,至少飞了

cmm

,两树相距8

cm

,一只小鸟从一棵树的树

A

EB

DC

分析:根据题意建立数学模型,如图AB8垂足为E,则AE6m,DE8m 在Rt

ADE中,由勾股定理得AD

m

,CD2

m

,BC8

m

,过点D作DEAB,

10

答案:10m

题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形 例6.已知三角形的三边长为a,b,c,判定ABC是否为Rt ①a1.5,b2,c2.5 ②a

54

,b1,c

23

解:①a2b21.52226.25,c22.526.25 ABC是直角三角形且C90

②b2c2

139

,a2

2516

,b2c2a2ABC不是直角三角形

例7.三边长为a,b,c满足ab10,ab18,c8的三角形是什么形状? 解:此三角形是直角三角形. 理由:

题型五:勾股定理与勾股定理的逆定理综合应用

例8.已知ABC中,AB13cm,BC10cm,BC边上的中线AD12cm,求证:ABAC

证明:

A

BAD

DC

为中线,BDDC5

cm

在ABD中,AD2BD2169,AB2169AD2BD2AB2,

222

ADB90,ACADDC169,AC13cm,ABAC


相关文章

  • 高中物理常考题型的总结和解题方法
  • [建议收藏保存]高中物理常考题型的总结和解题方法 高中物理考试常见的类型无非包括以下16种, 祥龙教育的老师们总结整理了这16种常见题型的解题方法和思维模板,还介绍了高考各类试题的解题方法和技巧,提供各类试题的答题模版,飞速提升你的解题能力 ...查看


  • 最新2015高考数学文理科历年题型分析与试卷分析
  • www.xinghuo100.com 全国卷Ⅰ(理科) 高考数学学科分析 (一) (二) 高考数学知识点汇总(略) 高考数学考纲提炼 考点1:集合(集合的交.并.补运算) 考点2:常用逻辑用语(命题的否定.充分必要条件) 考点3:函数(函数 ...查看


  • 求数列极限的方法总结
  • 求数列极限的方法总结 万学教育 海文考研 教学与研究中心 贺财宝 极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的 ...查看


  • 椭圆题型总结文
  • 椭圆 一.椭圆定义 2a ( 大于1.椭圆第一定义:平面内一动点到两定点F 1,F 2的距离和等于常数 F 1F 2=2c )点的集合叫椭圆:即P ={M | 注:当 MF 1 +MF 2=2a } 12 a >c 时轨迹为椭圆:当a ...查看


  • 高考临近数学复习方法
  • 高考临近数学复习方法 高考临近,如何有效地利用最后的时间提高数学复习的针对性和实效性,是所有考生共同面临的问题.记者特邀北京市十一学校数学学科主任.高级教师张鹤,特级教师.精华学校数学主讲教师齐智华,山东师范大学附中数学高级教师田明泉为高三 ...查看


  • 重庆市专升本考试大纲
  • 2011年重庆市普通高等学校 学长总结的资料和成功心得: 专 升 本 考 试 大 纲 重庆市教育委员会高等教育处 二○一○年三月 重庆市普通高等学校专升本大学英语考试大纲 (2011年) 一.考试大纲适用对象 本大纲适用于重庆市各普通高等学 ...查看


  • 专升本考试大纲
  • 重庆市普通高等学校 专 升 本 考 试 大 纲 重庆市教育委员会高等教育处 重庆市普通高等学校专升本大学英语考试大纲 一.考试大纲适用对象 本大纲适用于重庆市各普通高等学校英语专业和非英语专业申请专升本的高职高专学生. 参加本考试的英语专业 ...查看


  • 高考物理:解析12种常见题型[值得收藏]
  • 1.直线运动问题 题型概述: 直线运动问题是高中物理考试的热点,可以单独考查,也可以与其他知识综合考查. 单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合: 在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追 ...查看


  • 2018人教版初中数学教材重难点分析
  • 2018人教版初中数学教材 重难点分析 (名师总结教材重点,绝对精品,建议大家下载打印学习) 一.构建完整的知识框架--夯实基础 1.构建完整的知识框架是我们解决问题的基础,想要学好数学 必须重视基础概念,必须加深对知识点的理解,然后会运用 ...查看


热门内容