动作电位的变化过程

动作电位的变化过程:1静息相(处于极化状态,即静息电位状态)2去极相(首先C膜的静息电位由-90MV减小到0,叫去极化。C膜由0MV转变为外负内正的过程叫反极相)3复极相(动作电位的上升支很快从顶点快速下降,膜内电位由正变负,直到接近静息电位的水平,形成曲线的下降芝,叫复极化时相。。动作电位的上升支和下降支持续时间都很短,历时不超过2毫秒,所记录下的图形很尖锐,叫锋电位。锋电位之后还有一个缓慢的电位波动,这种时间较长波动较小的电位变化叫后电位

肌纤维的兴奋—收缩耦联:通常把以肌C膜的电位变化为特征的兴奋过程和以肌丝滑行为基础的收缩过程之间的终结过程成为;=

兴奋—收缩耦联的三步骤:1兴奋通过横小管系统传导到肌C内。2三联管结构处的信息传递。3肌质网对CA再回收。

骨骼肌的生理特性及兴奋条件:生理特性有兴奋性,收缩性。条件:1刺激强度(引起肌肉兴奋的最小刺激为阙刺激)2刺激的作用时间(足够时间)3刺激强度变化率(刺激电流由无到有或由大到小的变化率)

骨骼肌的收缩形式:根据肌肉收缩时的长度变化分四种。1向心收缩(肌肉收缩时长度缩短的收缩。向心收缩时肌肉长度缩短、起止点相互靠近,引起身体运动。且,肌肉张力增加出现在前,长度缩短出现在后。但肌肉张力在肌肉开始收缩后即不再增加,直到收缩结束。又叫等张收缩。是做功的=负荷重量*负荷移动距离。整个运动范围内,肌肉用力最大的一点称为顶点。在此关节角度下杠杆效率最差,只有顶点处肌肉才可能达到最大力量收缩。例子:肱二头肌收缩使肘关节屈曲举起某一恒定负荷)2等长收缩(肌肉在收缩时其长度不变,这种收缩叫--。有两种情况:肌肉收缩时对抗不能克服的负荷;当其他关节由于肌肉离心收缩或向心收缩发生运动时,等长收缩可使某些关节保持一定位置,为其他关节的运动创造适宜的条件。例子:十字支撑,直角支撑)3离心收缩(肌肉在收缩产生张力的同时被拉长的收缩。可以防止运动损伤。肌肉做负功。例子:高处跳下,脚先着地,通过反射活动使股四头肌和臀大肌产生离心收缩)4等动收缩(在整个关节运动范围内肌肉以恒定的速度,且肌肉收缩时产生的力量始终与阻力相等的肌肉收缩。整个收缩过程速度恒定。自由泳的划水动作。等动练习是提高肌肉力量的有效手段。)

骨骼肌不同收缩形式的比较:1力量(肌肉收缩时产生的张力大小取决于肌肉收缩类型和收缩速度。关于离心收缩为何能产生较大张力?①牵张反射,肌肉受到外力的牵张时会反射性引起收缩。在离心收缩时肌肉受到强烈的牵张,因此会反射性引起肌肉强烈收缩。2离心收缩时肌肉中的弹性成分被拉长而产生阻力,同时肌肉中的可收缩成分也产生最大阻力。而向心收缩只有可收缩成分肌纤维在收缩时产生克服阻力的肌肉张力。)2肌电(等速向心收缩和离心收缩时,在一定范围内积分肌电与肌肉张力成正比。在负荷相同情况下,离心收缩的IEMG较向心收缩低。)3代谢(在输出功率相同的情况下,肌肉离收缩时所消耗的能量低于向心收缩,耗氧量也低,与代谢相关的生理指标低于向心)4肌肉酸痛(做退让工作时容易引起肌肉酸痛和损伤,)

骨骼肌收缩的力学表现:1绝对力量和相对力量(某一块肌肉做最大收缩时产生的张力为该肌肉的绝对肌力。相对肌力是指肌肉单位横断面积所具有的肌力。)2肌肉力量与运动(①力量—速度曲线。张力大小取决于横桥数目,收缩速度取决于能量释放速率和肌球蛋白ATP酶活性。要想得到较快的收缩速度就必须降低负荷量。②肌肉力量与运动速度。当以同样速度运动时,力量大的表现出来的力量也大。③肌肉力量与爆发力。P=maD/t)

肌纤维类型的划分:1根据收缩速度(快肌纤维和慢肌)2根据收缩及代谢特征(快缩、糖酵解型,快缩、氧化、糖酵解型和慢缩、氧化型。)3根据收缩特性及色泽(快缩白、快缩

红、慢缩红)4布茹克司(I型,II型。II型又可分IIa IIb IIc三个亚型)

不同类型肌纤维的形态特征、机能及代谢特点:一、不同肌纤维的形态特征(快肌纤维的直径较慢肌纤维大,含有较多的收缩蛋白。肌只网发达。慢肌纤维毛细血管网较快肌纤维丰富,含有较多肌红蛋白,较多线立体且体积大。慢肌纤维由较小的运动神经原支配,运动神经纤维较细,传导速度慢。快肌纤维由较大运动神经原支配,传导快)二、生理学特征(1肌纤维类型与收缩速度:快肌纤维收缩速度快。2肌纤维类型与肌肉力量:肌纤维的收缩力量与单个肌纤维的直径和运动单位中所包含的肌纤维数量有关。快肌纤维的直径大雨慢肌纤维,且快肌运动单位中所包含的肌纤维数量往往多于慢肌运动单位。因此,快肌运动单位的收缩力量明显大于慢肌运动单位。3肌纤维类型与疲劳:快肌纤维在收缩时能产生较大力量但容易疲劳。慢肌纤维抵抗疲劳能力比快肌纤维强。因为:线立体体积大,数目多,有氧代谢酶活性高,肌红蛋白含量丰富,毛细血管网发达。)三、代谢特征(慢肌纤维中氧化酶系统活性高于快肌纤维。慢肌纤维氧化反应场所—线立体体积大且多,,快肌中少。快肌中与无氧代谢有关的酶火星高。)

运动时不同类型运动单位的动员:1在以较低的强度运动时,慢肌纤维首先被动员;而在运动强度较大时,块肌纤维先动员。2为了增强快肌纤维的代谢能力,训练计划必须包括大强度的练习,如果要提高慢肌纤维的代谢能力,训练计划就要由低强度、持续时间较长的练习组成

肌纤维的类型与运动:1参加时间短、强度大的项目运动员,骨骼肌中的快肌纤维百分数较从事耐力项目员和一般人高。2从事耐力3项目的员的慢肌纤维白分比高于非耐里项目的员或一般人。3即需要耐力又需要速度的项目员,其肌肉中快肌纤维和慢肌纤维百分比相等 训练对肌纤维的影响:能使肌纤维形态和代谢特征发生较大的变化。1肌纤维选择性肥大(耐力训练可引起慢肌纤维选择性肥大,速度、爆发力训练可引起块肌纤维选择性肥大。)2酶活性改变(有选择性增强,长跑运动员的肌肉中,与氧化供能有密切关系的SDH活性高,而与糖酵解及磷酸化有关的LDH及PHOSP活性最低,短跑员相反)

肌电的研究与应用:定义:骨骼肌在兴奋时,会由于肌纤维动作电位的传导和扩布而发生电位变化称肌电。用适当的方法将骨骼肌兴奋时发生的电位变化引导、放大并记录所得到的图形叫肌电图 1利用肌电测定神经的传导速度。2利用肌电评定骨骼肌的机能状态。(①肌肉工作过程中肌电幅值的变化。肌电幅值是指肌电的信号的振幅大小。反映其指标的有:积分肌电和均方根振幅。疲劳时肌电振幅声高。②肌肉工作过程中肌电频谱变化,反映其指标的有:平均功率频率和中心频率。随疲劳加深,肌电频谱左移,平均功率频率下降)3利用肌电评价肌力(当肌肉以不同负荷进行收缩时,积分肌电同肌力成正比关系。)4利用肌电进行动作分析:多导肌电记录仪记录肌电,根据每块肌肉的放电顺序和肌电幅度,结合高速摄像等技术,对员的动作进行分析)

感受器:分布在体表或组织内部的一些专门感受机体内外环境改变的结构或装置。

感受器的一般胜利特征:1适宜刺激(每种感受器都有它最敏感的刺激,这刺激就是感受器的--)2换能作用(各种感受器可将其接受的各种形式的刺激能量转化为神经冲动传向中枢,叫--)3编码作用(能将刺激的环境信息转移到动作电位排列组合中)4适应现象(当一定强度刺激作用于感受器,其感觉神经产生的动作电位频率,将随刺激作用时间延长而逐渐减少)

感觉信息的传递:1特异性传入系统(各感受器传入的神经冲动要经过脊髓神经或脑干,上行到丘脑换神经原,并安排列顺序投射到大脑皮质特定区域,引起特异的感觉叫==)2非特异性传入系统(特异投射传入系统的神经县委竟脑干时,发出侧枝与脑干网状结构的神经原发生突触联系,通过多次更换神经原后,上行抵达丘脑内侧部再交换神经原,发出纤维弥散地投射到大脑皮质的广泛区域。功能:维持和改变大脑皮质的兴奋状态,保持机体觉醒)

大脑皮质的功能定位:各种感觉传入冲动在大脑皮质进行分析和综合,产生相应的感觉。大脑皮质的不同区域在功能上具有不同的作用。

感觉柱:皮层体表感觉区神经C的纵向排列构成大脑皮质的基本功能单位。

大脑皮质的感觉分析功能:1体表感觉(投射区位于中央后回{第一体表感觉区}。特点:感觉冲动向皮质投射呈左右交叉,但头面部感觉冲动投射到左右双侧皮质;投射区域的空间位置是倒置的{下肢的感觉区在皮质顶部,上肢感觉区在中间,头面部感觉区在低};投射区的大小与不同体表部位的感觉灵敏程度有关。)2运动感觉区(投射区域位于中央前回{四六区},可引起受试者企图发动肢体运动的主观感觉。)3视觉感觉区(位于枕叶距状裂上下缘{17 18区}如一侧枕叶损会两眼偏盲,双侧伤全盲)4听觉和前庭觉(位于慑叶的慑横回和上回{41 42区})5内脏感觉(位于第一第二感觉区)

视觉器官:折光系统(角膜房水晶状体玻璃体)感觉系统(视网膜)

视觉的形成:平行光---折光系统(折射)-----视网膜(成像)-----视网膜上的感光C将物理光刺激转化为神经冲动----经神经到丘脑----大脑皮质感觉区投射—视觉

视调节:正常人的眼球折光系统的折光能力,能随物体的移近而相应的增加,使物像落在视网膜上而看清物体,这调节过程叫---

视调节分类:1晶状体调节(是一个有弹性的组织,其调节是一个复杂神经反射活动。当看近物时,睫状肌收缩,悬韧带松弛,晶状体向前后凸出,增加曲率,使物像移到视网膜上。看远物时----。)2瞳孔调节(看近物时,可反射性引起双侧瞳孔缩小,称瞳孔调节反射。。瞳孔的大小随光线强度而改变的现象叫瞳孔对光反射。。强光-刺激---视网膜感受C---经神经纤维---中枢(中脑动眼N核)---从副交感神经传出----使瞳孔括约肌收缩----瞳孔缩小)

视网膜的感光机能:1视锥C(分布于视网膜的中央凹处,能感受强光刺激,形成明视觉,色觉。)2视杆C(分布于视网膜的周边处,对光的敏感度高,能接受弱光刺激,形成暗视觉) 视网膜的光化学反应:1视锥C和视杆C含有能吸收光能的光敏物质(感光色素)在光线的作用下能发生一系列的化学反应叫光化学反应。2视锥C中的感光色素为视锥色素,视杆C中的色素为视紫红质(分子组成为视蛋白和视黄醛)3在光的作用下视紫红质分解----全反视黄醛和视蛋白---分解过程中使视杆C去极化,并产生冲动,冲动沿神经传到大脑枕叶—产生视觉。反视黄醛+视黄醛酶—还原为VA—经眼内和肝脏有关酶催化---顺视黄醛。其跟视蛋白生成视紫红质(补充作用)

色觉:光无颜色,但作用于视网膜上的视锥C后,就能引起大脑产生色觉。

三原色学说:视网膜上有三种视锥C,分别含红绿蓝三种色光敏感的感光色素。不同波长的光线对三种感光物质的刺激不同,故可引起不同颜色。

视力:又叫视敏度,眼对物体微细结构的分辨能力,通常以分辨两点之间最小距离为标准。 视野:单眼注视正前方一点时,该眼所能看到的空间范围。鼻侧《镊侧,白》黄》红》绿。 立体视觉产生的原因:因为同一物体在两眼视网膜上所成的像并不完全相同,右眼看到的物体右侧面较多,左眼看到的左侧多。其位置虽略不同,但又在相称点附近。最后经中枢N系统综合、、、、

眼肌平衡:眼球运动靠运动眼球肌:上下直肌、内外、上下斜肌。正视:当眼注视正前方,若对称眼肌紧张度相等,眼球瞳孔在正中央处。斜视:如果其中一条眼肌紧张度稍大,瞳孔偏向一方。隐斜视:若一条眼肌紧张度虽稍大,但在平衡时靠对抗肌紧张度的加强予以补偿,瞳孔仍保持在正中央。

耳:外耳(耳廓外耳道)中耳内耳又叫迷路(耳蜗椭圆囊球囊三个半规管。后三个叫前庭器官)

听觉传播:声波---耳廓—经外耳道—鼓膜(振动)、----引起听骨链(增压效应—作用于内耳0圆窗上---内淋巴液振荡)---引起外淋巴、基底膜振动----刺激毛C产生去极化感受器电位---

通过突出传递在听N纤维末梢产生总和电位和动作电位---沿神经到皮层听觉中枢---听觉 耳蜗作用:内有一条基底膜,位于基底膜上的螺旋器是声音感受器。毛C顶部有上百条排列整齐的听纤毛,听纤毛与盖膜直接接触或埋植在盖膜的胶状物质中。基底膜振动时听纤毛弯曲,使毛C听神经产生神经冲动,冲动沿听神经传向听中枢。

位觉:身体进行各种变速运动时,引起的前庭器官中的位觉感受器兴奋并产生的感觉叫--- 前庭器的感受装置与适宜刺激:1球囊、椭圆囊和半规管之间以充有内淋巴的小细管道相联系。2球囊和椭圆囊的壁上有囊斑,囊斑中有感受性毛C,其纤毛插入耳石膜内,耳石膜表面有许多CACO3结晶称耳石。3由于重力对耳石的作用方向改变,耳石膜与毛C之间的空间位置发生改变,使毛C兴奋,冲动传到大脑皮层前庭感觉区,产生头部空间位置改变的感觉。4人做直线加速或减速耳石膜因惯性位置移—毛C纤毛弯曲兴奋—反射调节肌肉张力维持身体平衡‘冲动传到大脑皮层感觉区,空间位置变速感觉。5三个半规管互相垂直,分别称前后水平半规管。每个半规管均有壶腹,其壁上有壶腹嵴,壶腹嵴上有感受性毛C,毛C的纤毛上覆盖许多胶状物质,形如帽状,叫终帽。半规管壶腹嵴的适宜刺激是旋转正负加速度。当旋转运动开始、停止或突变速时,由于内淋巴的惯性作用,使终帽弯曲,刺激毛C而兴奋,冲动经前庭N传入中枢,产生旋转运动感觉。水平—饶垂直轴左右旋转,前后半规管—饶前后横轴。

运动生理学

1.运动生理学是研究人体在体育运动的影响下机能活动变化规律的科学。

2.人体的基本胜利特征:新陈代谢、兴奋性、应激性、适应性。

应激性:机体和一切活组织对周围环境条件的变化有发生反应的能力,这种能力和特性叫做应激性。可以引起反应的环境的变化叫刺激。

3.神经调节:特点是迅速而且精确;体液调节的特点是缓慢而广泛,作用持久。

体液调节:机体的某些细胞产生某些特殊的化学物质,包括各种内分泌腺所分泌的激素,通过细胞外液或借助于血液循环被送到一定器官和组织,以引起特有的反应,并以此调节着人体的新陈代谢,生长发育,生殖以及对肌肉活动的适应等重要机能。

4.反馈分正反馈和负反馈

5.肌肉的生理特性:兴奋性、收缩性、传导性。

6.引起兴奋的刺激条件:A刺激的强度B刺激强度的变化速率。C刺激作用时间。

8.时值:法国生理学家拉披克提出以两倍基强度的刺激作用于组织引起兴奋所需的最短时间,作为衡量兴奋性的指标。拉披克把这一特定时间称为是值。屈肌的时值比伸肌短。

9.“全和无‘’现象:用阈下刺激单个肌纤维,不能引起收缩;若用阈刺激就可以引起收缩,如果加大刺激(用阈上刺激)肌纤维的收缩幅度并不会增长,这种现象叫“全和无‘’现象。

14.跳跃式传导:在有髓鞘纤维中,它的兴奋和静息电位部位间的局部电流集中地通过邻近的朗氏结使之去极化,所以有髓鞘纤维中总是一个朗氏结兴奋,再刺激下一个朗氏结,是跳跃式的传导。

15.兴奋-收缩藕连:兴奋由神经传递给肌肉的传递过程。(神经肌肉传递):运动神经末梢去极化,改变神经膜的通透性,使Ca进入末梢内,导致突触小泡的破裂,释放出Ach,Ach经过突触间隙扩散至终膜与终膜上的受体(R)结合,形成R-Ach复合体,R-Ach是终膜去极化,产生终板电位(EPP)-(EPP)达到一定的阈限时,作用于肌膜使它发放可传播的动作电位,肌膜动作电位通过-收缩耦联引起肌纤维收缩。

16.肌纤维的兴奋-收缩过程:A肌膜的电位变化触发肌肉收缩即兴奋收缩耦联。B横桥的运动引起肌丝滑动。C引起肌收缩后的舒张。

17.单收缩的过程:潜伏期、缩短期、宽息期。

18.强直收缩:肌肉因成串刺激而发生的持续性缩短状态称强直收缩。

21.肌纤维的分类;快肌纤维(白肌纤维)、慢肌纤维(红肌纤维)

22.主要的生理特征:慢肌纤维(红肌纤维):运动神经元(小)、放电频率(低)、收缩速度(低)、耐力(高)、毛细血管密度(高)、血红蛋白含量(高)、糖酵解酶活性(低)、线粒体酶活性(高)、肌原纤维ATP酶活性(低)。白肌纤维与之相反。

23不同运动项目肌纤维百分比:短跑的快肌纤维占70%;长跑的慢肌纤维占70%。中长跑介于其中。

24.运动对肌纤维的影响:A肌纤维的选择性肥大(耐力项目引起慢肌纤维选择性肥大;速度-爆发力引起快肌纤维选择性肥大)

B肌纤维内酶活性增强 C肌纤维类型百分组成的变化。

28.血液的机能:血液的机能通过循环系统完成的。

A维持内环境的相对稳定作用。 B运输作用。 C调节作用。 D防御和保护作用。

29.渗透压:溶液促使水分子通过半透膜从浓度低的一侧向浓度高的一侧扩散的力量。称为渗透吸引力。大小决定于单位体积溶液中溶质分子或颗粒的数量。

30.等渗溶液;以血浆的正常渗透压为标准,与血浆正常渗透压很相似的溶液称等渗溶液。0。9%。氯化钠5%葡萄糖。

31.正常人血浆的PH 值7。35--7。45 平均7。4

32最主要的缓冲对 NaHCO3_----- H2CO3 20/1

34.红细胞(血红蛋白)的功能: A运输气体 O2、CO2 B缓冲血液酸碱度。

35.血红蛋白的含量;男子12-15克%;女子11-14克%。

36.运动性贫血:在训练期间(特别是训练初期)或比赛期间Hb红细胞数减少,出现暂时性贫血想象称运动性贫血。

原因:A红细胞破坏增多, B蛋白质补充不足 C由于缺铁而引起贫血。

防止:调整能动量或补充足够的蛋白质和铁。

37.合胞体:肌细胞虽有界限,但兴奋波极易彼此之间传播,在活动时有如单一细胞,在生理学上称之为”合胞体”

38.心肌的生理特性:A自动节律性。B传导性。C兴奋性。D收缩性。

39.心肌细胞收缩的特点:A对细胞外液Ca的浓度有明显的依耐性。B全或无的同步收缩C不发生强直收缩。

41.心率:每分钟心脏搏动的次数,正常安静时60-100次之间。

42。心电图的波形及意义、R、S、T。 P波表示:左右心房除极化时所产生的电变化。P-R(R-Q)期间:表示心房除极化开始到心室除极化开始所需的时间。QRS波群表示左右心室先后兴奋除极化所产生的电变化。S-T段表示心室除极完毕,复极尚未开始各部分之间无电位差。T波表示心室复极化过程中的电变化。Q-T表示心室开始兴奋除极化到全部复极化所需的时间。

心电图仅反映的是心脏兴奋的产生,传导和恢复过程中的生物电变化,仅反映心肌的兴奋,并不反映心肌的机械收缩过程。

47.运动过程中心血管的反映:A血液的重新分配B心输出量增加C血压发生变化,收缩压上升,舒张压下降。

48.心力储备:是指心输出量能随机体代谢需要而增长的能力。

49.动脉血压的形成:心室收缩射血,外周阻力,大动脉弹性。

50.心缩期只有每搏输出量的1/3即约20-30毫升的血液流向外周;其余2/3血液留在主动脉。

51.影响动脉血压的因素;A每搏输出量。B心率。C外周阻力。D大动脉管的弹性。E循环血量

52.影响静脉回流的因素:A心脏收缩。B呼吸运动。C骨骼肌的挤压作用。D重力和体位E静脉管壁的收缩。

53.减压反射:颈动脉窦及主动脉弓的压力感受性反射。(作用是一种快速控制动脉血压相对恒定的自身调节。

54.训练对心血管系统的影响:可促使人体的血管系统的形态、机能和调节能力产生良好的适应,从而提高人体工作能力。表现以下几个方面:A窦性心率徐缓。B运动性心脏增大。C心血管机能改善。

55.呼吸过程的三个环节:A外呼吸。(通气过程和换气过程)B气体运输。C内呼吸。

56.肺通气的动力是呼吸肌舒缩完成呼吸动力。呼吸形式:隔式呼吸(腹式呼吸)、肋式呼吸(胸式呼吸)、混合呼吸。

四个互不叠加的肺容量:潮气量、补吸气量、补呼气量、余气量。

57. 每分肺泡通气量=(呼吸深度-解剖无效腔《呼吸道》)*呼吸频率。

60. 血红蛋白与氧的可逆结合,氧分压高、氧结合。

61. 氧离作用:在氧分压低的组织内,氧合血红蛋白迅速放出氧,形成还原血红蛋白

.生理意义:“S”形氧离曲线的上有重要的生理意义。当氧分压在60-100 毫米汞柱一段时,坡度不大,形式平坦,而使氧分压从100毫米汞柱至80毫米汞柱时,血氧饱和度从98%降至96%。这对高原适应或轻度呼吸机能不全的人均有好处,只要能保持动脉血中氧分压自在60毫米汞柱以上,血氧饱和度仍有90%,不致造成供氧不足的严重后果。

曲线下段显示出氧分压在60毫米汞柱以下时,曲线逐渐变陡,意味着氧分压下降,使血氧饱和度明显下降。氧分压为40-10毫米汞柱时,曲线更陡,此时;氧分压稍有下降,血氧饱和度就大幅度下降,释放出大量的氧保证组织换气。这种特点对肌肉活动,保证供氧都很有利。

影响因素:CO2升高。PH值下降、体温上升,都使血红蛋白对氧的亲和力下降,氧离曲线右移,释放出更多的氧。反之氧离曲线左移。

64.氧利用率=(动脉血含量-静脉血含量)/动脉血含量*100%

66.CO2的运输。A物理运输6%。B化学结合形式: 与Hb结合7%,与血液中的Na、k结合87%

67.呼吸与酸碱平衡:(稳态结合)。P87

68。血液的化学成分的改变对呼吸运动的调节。CO2上升、O2的下降、H的上升都促进呼吸。

70。运动后过量的氧耗:a满足因剧烈运动后体温仍处于较高水平所需要的氧。b满足心脏活动仍处于较高水平所需要的氧。c满足肺功能仍处于较高水平所需要的氧d血液中茶酚胺仍处于较高水平, 也导致较多的氧。D最主要是消除乳酸氧债。

71。在运动时如何合理的运用呼吸方法:A减少呼吸道阻力。B节制呼吸频率,加大呼吸深度,提高肺泡通气量。C呼吸方法适应于技术动作变换的需要D合理运用憋气。

74.能量系统的一般特点:P115 有氧氧化供能与无氧氧化供能?P116

75.影响糖酵解能力因素有:A人体对缓冲酸性产物能力的大小。B人体各组织细胞,特别是脑细胞对酸的耐受能力大小C可能与体内糖原的含量有关。

76.运动训练与能量利用机能节省化:表现在完成同样强度的工作时,经过系统训练后,需氧量减少,能源消耗两也减少,即完成同样的运动负荷时,有训练者消耗能量减少。

77.长期训练能量节省化的主要原因:训练改进了动作技能,使动作更协调自如。自动化程度提高,减少了多余的动作,使得能量的利用更经济了;同时运动训练也提高了呼吸循环系统机能水平,工作效率提高。这样消耗于供能器官本身的能量也减少了,如在完成较小强度的运动负荷时,有训练者比无训练者的心率较低;呼吸频率较少,因而心脏及呼吸器官消耗的

能量也就较少。主要意义:从能量消耗的观点来看,能量利用愈节省,运动效率也愈高,这就为取得优异成绩创造了有利条件,特别是对持续时间长,总需能量大的运动项目来讲,就更是如此。

78.散热过程:A绝大部分的热量由皮肤散发。B小部分由呼吸道蒸发散热。C少量的热量用来加温吸入的冷空气或冷饮冷食D随尿和粪排泄而散发。

皮肤散热的四种方式:A辐射B传导C对流D蒸发。

79.运动时体温的变化和调节;在高温下如何调节体温。()新书)

80.应激:应激是机体应付任何需要时的非特异性反应。

81.感受器的一般生理特性:A适宜刺激B换能作用。

82.视杆细胞对暗光有感受能力。视锥细胞对强光和颜色有感受能力。

83.透明的角膜、房水、晶状体和玻璃体构成折光系统。

84.晶状体调节P155

85.视紫红质:视杆细胞中含有一种淡紫红色的结合蛋白质称视紫红质;

86.中央视觉:视锥细胞多的中央部分,一方面感色能力强,同时清晰地分辨物体,用这部分看东西称为中央视觉。

周围视觉:视杆细胞多的边缘部分视野范围广,故能用于观察空间范围和正在运动的物体称为周围视觉。

87.立体视觉:用单眼视物时,只能看到物体的平面,即只能看到物体的高度和宽度。若用双眼视物时,能补充地看到物体的深度,从而形成立体视觉。

88.三原色学说:红、绿、蓝或紫。

89.正视:当眼向远方注视时,若对称的眼肌紧张度相等,则眼球瞳孔在正前方称为正视。 斜视:若对称的眼肌中,其中一条肌肉紧张度大,一侧瞳孔偏向一方,称为斜视。

隐斜视:有的人某一条眼肌的紧张度虽然稍大,在平时能由某对抗肌紧张度稍大加强来加以补偿,瞳孔仍能保持在正中位置称为隐斜视。

90。行波学说解释(看)

91.椭圆囊与球囊内的囊斑的适宜刺激为耳石重力作用与直线运动的加速度。

半规管中壶腹峭毛细胞的适宜刺激是旋转运动的加速度。

92.眼球震颤:身体绕着纵轴旋转时,就可以看到眼球有规律的运动,起先朝旋转方向相反的一面逐渐慢移动,隔一定时间就回跳一下,这个现象叫做眼球震颤。

93.前庭器官的稳定性:由刺激前庭器官器,产生神经冲动引起机体的各种前庭反应的强度叫前庭器官的稳定性。。

94.提高前庭器官机能的训练方法:主动训练法、被动训练法、综合训练法。

95.肌梭可以感受肌肉的长度,腱梭可以感知肌肉的张力大小。

96.兴奋性突触后电位:在兴奋性突触,每当突触前神经元的神经冲动传至轴突终末时,引起突触小泡释放递质,递质与突触后膜受体结合后,提高了后膜对Na、k、Cl尤其是Na 的通透性,产生突触后膜局部去极化,这种局部电位变化叫EPSP

97.抑制性突触后电位(IPSP)在抑制性突触,每当突触前神经元的神经冲动,传至轴突终末时,引起突触小泡释放递质,递质与后膜受体相结合后,提高了K和Cl的通透性,使突触后膜出现超极化,这个局部电位叫做IPSP

98.突触的传递过程:突出前末梢兴奋-释放兴奋性递质-兴奋性突触后电位(突触后膜去极化)-突触后神经兴奋。突出前末梢兴奋-释放抑制性递质-抑制性突触后电位(突触后膜超极化)-突触后神经抑制。

99.反射中枢――细胞群

兴奋通过反射中枢的特征:a单向传导b中枢延搁c兴奋总和d兴奋后作用e兴奋的扩散f兴

奋的节律化

100.突触后抑制:是由兴奋性神经元与后继的神经元构成抑制性突触的活动引起的一种抑制。 101.交互抑制:某一中枢兴奋时,在功能上与它相对抗的中枢发生抑制,这种抑制现象叫交互抑制

102.牵张反射:当骨骼肌受到外力牵拉时,该肌就产生反射性收缩,这种反射称为牵张反射,两种类型-腱反射、肌紧张。

103.Y-环路:当肌肉收缩时,这种由于Y运动神经元的活动,通过肌梭传入,引起支配同一肌肉a运动神经元的活动和肌肉收缩的反射过程,称为Y-环路。

104.腱反射是由于快速牵拉肌腱时发生的牵张反射。

肌紧张是指缓慢持续牵拉肌肉收缩时发生的牵张反射,其表现为受牵拉的肌肉发生肌肉紧张性的收缩,故又称紧张性牵张反射。肌紧张对于维持躯体的姿势非常重要。

105.姿势反射:动物和人为维持身体基本姿势而发生肌肉紧张张力的重新调整的反射活动,统称为姿势反射。

静位反射:是由于头部姿势改变时所引起的一种姿势反射。分为状态反射和翻正反射。 状态反射;是由于头部位置改变时反射性地引起四肢肌肉张力重新调整的一种反射。

状态反射的规律:A头部后仰,引起上下肢及背部伸肌紧张性加强,因此四肢伸直,背部挺直。B头部前倾:引起同侧上下肢伸肌紧张性减弱,因此四肢弯曲。C头部侧倾或扭转:引起同侧上下肢伸肌紧张性加强,异侧上下肢伸肌紧张紧张性减弱。

翻正反射:当人或动物处于不正常体位时,通过一系列协调运动将体位恢复常态的反射活动,称翻正反射。

106:条件反射与非条件反射。

非条件反射:a先天的遗传的b种族所有的c任何条件下发生的d固定的神经联系e大脑皮质下部位可实现。

条件反射:后天的、生活中获得的。个体所有的,在一定条件下形成的,暂时的神经联系。高等动物主要通过大脑皮质实现。两者a都是反射活动。B都是完整的反射弧。

107.建立条件反射的条件:a大脑皮质处于良性兴奋状态b条件刺激要在非条件刺激之间出现,并且两者必须结合一段时间。C条件反射建立快慢同条件刺激和非条件刺激的性质和强度有关。D建立条件反射时应尽量避免其他因素的干扰。

108.第一信号系统:对第一信号(现实的具体信号)发生反应的皮质机能系统。

第二信号系统:对第二信号(抽象的语言信号是在具体信号的基础上建立起来的,是具体信号的信号)发生反应的皮质机能系统叫第二信号系统。

第二信号系统的意义:a极大地丰富了人体对外界各种事物的认识。B不仅是语言活动的生理基础,也是人类思维活动的生理基础,正是这种抽象的思维能力,使人从动物区分出来。C体育运动教学和训练中有重要的意义。

109.运动技能是指人体运动中掌握和有效地完成专门动作的能力,也就是指在准备的时间和空间里正确的运用肌肉的能力。

运动机能和身体素质的关系:体育运动的发展和提高,要求人们有良好的身体素质和运动水平,身体素质的发展,在于人体机能能力的不断扩大和增强,而运动技术水平的提高,则在于运动技能的不断改进和创新,随着运动技能的形成,同时身体素质也得到发展,身体素质提高了,对进一步改善运动技能又打下了基础,所以两者相辅相成,相互影响的。

110.随着运动的生理机理是暂时性神经联系。形成运动技能就是建立复杂的、链锁的、本体感受性的运动条件反射。

111.运动动力定型,学会运动技能后,大脑皮质运动中枢支配的部分肌肉活动的神经元在机能上,进行排列组合,兴奋和抑制在运动中枢内有顺序地,有规律地,有严格时间间隔地交

替发生,形成一个系统,成为一定的形式和格局,使条件反射系统化,大脑皮质机能的这种系统性称为运动动力定型。运动技能的形成就是建立运动动力定型的结果。

112.形成运动技能的过程:泛化阶段、分化阶段、巩固过程。

113.自动化:就是练习某一成套动作时,可以在无意识的条件下完成,其特征是对整个动作或是对动作的某些环节,暂时变得无意识。

114.影响运动技能形成与发展的因素:a充分利用各感觉机能间的相互作用。B充分利用两个信号系统的相互作用c促进分化抑制的发展。D消除防御反射。E充分利用运动技能间的相互作用。

115.身体素质:通常把人体在运动活动中所表现出来的力量、速度、耐力等机能能力称为身体素质。

116.决定力量大小的生理基础:a肌纤维的横断面积。B肌纤维类型和运动单位。C肌肉收缩时动员的肌纤维数量。D肌纤维收缩时的初长度。E神经系统的机能状态。F年龄和性别。G体重。

117.动力性练习与静力性练习:a动力性练习能更快地发展动力性力量。静力性练习迅速发展静力性力量b。能有效地发展肌肉横断面和肌肉中的毛细血管C动力性练习可使全动作范围的力量普遍得到发展,静力性练习则需不断更换位置,但亦可发展某一位置时的力量d动力性联系可使神经肌肉协调加强(结合动作技能的巩固)e静力性练习省时间,能量消耗较少,间歇少,使用器械也较少。

118.等动练习:利用等动练习器进行的力量练习。

超等长练习:肌肉向心收缩(肌肉收缩力大于外力时,肌肉收缩时,肌肉缩短),如果紧接着在同一肌肉的离心收缩(肌肉收缩小于外力,肌肉收缩时肌肉拉长)之后会更有力,利用这种方法进行力量训练称超等长练习。

119.离心收缩后紧接着进行向心收缩,之所以能发展更大力量原因是a肌肉弹性体产生张力变化。B肌牵张反射。

120.发展肌肉力量的原则:a大负荷原则b渐增负荷原则c专门性原则d负荷顺序原则e有效运动负荷原则f合理训练间隔原则。

121.RM(最大重复次数):是指肌肉收缩所能克服某一负荷的最大次数。

122.速度素质:是指人体进行快速运动的能力。

反应速度:是指人体对刺激发生反应的快慢。

动作速度:是指完成单个动作的时间长短。

位移速度:在周期性运动中往往以单位时间通过的距离或通过一定距离所用的时间来表示。 123. 反应速度的决定因素a感受器的敏感程度b中枢延隔c效应器(肌纤维)的兴奋d条件反射的巩固程度。

124.动作速度快慢取决于:A肌纤维的百分组成及其面积B肌力,肌力越大,就能更容易地克服阻力,C肌纤维兴奋高时刺激强度低且作用时间短就能引起兴奋D条件反射的巩固程度。 125.跑速:步长—肌力、腿长、柔韧性。步频-神经过程的灵活性、快肌及面积、肌肉放松能力、运动技能巩固能力。

126.有氧耐力:是指长时间进行有氧工作的能力。有氧耐力的生理基础:a肺呼吸b氧运输c心输出量。最大摄氧量(氧极限)是指运动时每分钟能够吸入并被身体利用的最大数量。 127.无氧阈:是指人体在递增工作强度中,由有氧代谢供能开始大量动用无氧代谢供能的临界点(转折点)常以血乳酸含量达到4毫克分子/升所对应的强度或功率来表示。

128.有氧训练的方法:持续性练习、间断性练习、高原训练法。

129.无氧耐力:是指身体处于缺氧情况下,较长时间对肌肉收缩供能的能力。

决定无氧耐力的生理基础:a肌肉内无氧酵解供能能力的提高。B缓冲乳酸的能力提高。C脑

细胞对血液酸碱度变化的耐受能力。三个因素:a无氧酵解的供能能力b血液中缓冲能力。C脑细胞耐受“酸”的能力。

130.机能变化分为:赛前状态:进入工作状态:稳定状态、疲劳和恢复五个阶段。

131.赛前状态:在赛前或运动前,人体器官、系统会产生一系列机能变化,称这时的机能状态为赛前状态。影响因素:A兴奋性过高(过度紧张)B适宜的兴奋性C过低(情绪低落) 132.准备活动:在正式比赛或比赛之前所进行的各种身体练习叫做准备活动。

目的:是在赛前状态的基础之上通过各种练习进一步为正式训练或比赛做好机能上的准备。 作用;a代谢水平提高,使体温上升b提高循环、呼吸等内脏器官机能水平c促进参与运动有关中枢的协调d可调节赛前状态,使大脑皮质兴奋处于适宜水平。

如何作准备活动;准备活动的量和强度应较正式的运动小,以避免由于运动影响运动成绩,以微微出汗及自感已活动开为宜。控制好间隔时间,是准备活动经休息后,身体机能水平正好处于超量恢复的上升阶段。内容:包括一般准备活动和专门性准备活动。

133.痕迹效应:?

134.进入工作状态:无论在日常生活,生产劳动或进行体育运动时,人的机能能力和工作效率都不能在活动一开始就达到最高水平,而是在活动开始后一段时间内逐步提高的,这个逐步提高的过程叫进入工作状态。

产生进入工作的原因:人体生理的惰性。A完成任何一项反射活动都需要一定的时间b内脏器官的生理惰性。

影响进入工作状态的因素:a时间b工作性质c个人特点

135.极点:在进行剧烈运动时,由于在运动开始阶段内脏器官的活动赶不上运动器官的需要,往往产生一种非常难受的感觉,此时感到呼吸困难,肌肉酸疼、动作迟缓]精神低落、简直不愿再运动下去,这种状态叫极点。

第二次呼吸:出现极点后,如果运动者不停止运动,而是靠意志和毅力坚持下去,同时稍放慢动作速度,有意识地呼吸,过不久就会度过一难关,难受的感觉减轻或着消失,呼吸又变得轻松自如而有节奏,运动能力得到更充分的发挥。

136.稳定状态:在一定强度的周期运动中,当进入工作状态结束后,各器官系统的机能活动(就达到一种稳定状态,工作能力也稳定在一个相应的水平)这种机能状态就称稳定状态。 真稳定状态:进行亚极量运动时,摄氧量可满足需氧量的要求,运动中依靠有氧供能,几乎没有氧债的积累,这时器官系统的机能活动水平所处的稳定状态称为真稳定状态。

假稳定状态:当运动的需氧量超过人体实际摄氧水平时,尽管呼吸与循环系统的机能活动也达到很高的水平,但机体摄入的氧量仍满足不了需氧量的要求,有氧债积累,在这种缺氧条件下无氧酵解参加供能,使乳酸大量产生,这时虽然各项生理机能仍能满足运动的需氧量,故称假稳定状态。

137.疲劳:机体不能保持在某一特定水平,或者不能维持某一预定的运动强度。

138.疲劳产生的原因:a“衰竭”学说b堵塞学说c内环境稳定性失调学说d保护抑制学说e突变学说。

139.判断疲劳的方法:a生理学指标(肌力、心电图、脑电图、肌电图、肺活量、血压体位反射、皮肤空间阈、视觉闪光融合阈等测定)b运动医学检查(台阶试验、联合机能试验)c教育学观察与自我感觉

140.恢复过程运动中所消耗掉的物质和器官系统下降了的机能,通常经过一段时间休息都能恢复到运动前的水平,这段时间所发生的机能变化叫做恢复过程。

141.恢复过程的阶段性:第一阶段,运动时物质消耗过程占优势,恢复过程虽也进行,但当时是消耗大于恢复,所以使能量物质减少,各器官系统的工作能力下降。第二阶段,运动后消耗过程减弱,恢复过程占明显优势,这时能源物质及各器官系统的机能能力逐渐恢复到原来

水平。第三阶段:在这个阶段运动时消耗掉的物质及各器官系统的机能恢复得超过原有水平,这个阶段也叫超量恢复阶段,超量恢复保持一段时间又回到原有水平。

142.运动效果:是指经常从事运动练习的人在重复运动的影响下各器官系统形态、结构和机能所产生的适应变化及良好反应。

143.评价训练程度时应注意:a运动员的个性特点。B运动项目的特点c运动年限特点d生理指标“变异性”特点e生物节律特点。

144.安静状态时训练程度的生理指标(某一系统评价)A运动系统a骨骼与关节b肌肉B氧运输系统a血液b心脏血管c呼吸。

145.不同训练程度的人体对定量负荷的反应。A有训练者工作开始时的机能动员快B有训练者工作时生理机能反应较低,而且是稳定状态C工作结束后的恢复阶段明显缩短a中枢神经系统b运动器官c心肺功能。

146.最大运动负荷时训练程度的标志:a最大摄氧量和氧脉搏b氧债和无氧阈c连续心音现象。 147.连续心音:运动员在进行特殊的剧烈的机能测验时,在恢复期内呈现1-3分钟的动脉血压的“零点”现象。即动脉血压的“零点”现象。

148.为什么要对运动员进行机能评定。如何进行运动机能评价?

A生理指标检查;晨脉、血压、体重、心电图、肌电图、脑电图、定量负荷b运动员的自我感觉及教育学观察。

149.心率和血压在实践中的运用。(心率控制强度)P105-106

150.儿童少年解剖生理的一般特点和体育教学与训练?P262

151.儿童少年身体素质的发展规律:a身体素质的自然增长b身体素质发展的阶段性(速度素质最先-耐力素质次之-力量素质最晚)c各项身体素质发展的敏感期或增快期。D各项身体素质达到最高水平的年龄。E力量素质和耐力素质发展与年龄特征。

152.瓦尔沙瓦现象:体操练习中静力性工作产生憋气,血压随动作的进行和恢复出现特殊变化的规律,

其特征表现为:血压先升高后降低,再上升,而后恢复到运动前水平:血液量也呈现先少、后多,再恢复常量。称这种变化为瓦尔沙瓦现象。

“林加尔德”现象:在体操练习中,有很多支撑、悬垂,折体、回环等动作,常常要求胸廓与腹壁等部位同时或交替固定,因而使呼吸肌的活动受到限制,造成运动困难,丹麦生理学家林加尔德发现,在进行静止用力动作时,呼吸和循环机能变化没有运动后明显,这种生理方应称为林加尔德现象。

动作电位的变化过程:1静息相(处于极化状态,即静息电位状态)2去极相(首先C膜的静息电位由-90MV减小到0,叫去极化。C膜由0MV转变为外负内正的过程叫反极相)3复极相(动作电位的上升支很快从顶点快速下降,膜内电位由正变负,直到接近静息电位的水平,形成曲线的下降芝,叫复极化时相。。动作电位的上升支和下降支持续时间都很短,历时不超过2毫秒,所记录下的图形很尖锐,叫锋电位。锋电位之后还有一个缓慢的电位波动,这种时间较长波动较小的电位变化叫后电位

肌纤维的兴奋—收缩耦联:通常把以肌C膜的电位变化为特征的兴奋过程和以肌丝滑行为基础的收缩过程之间的终结过程成为;=

兴奋—收缩耦联的三步骤:1兴奋通过横小管系统传导到肌C内。2三联管结构处的信息传递。3肌质网对CA再回收。

骨骼肌的生理特性及兴奋条件:生理特性有兴奋性,收缩性。条件:1刺激强度(引起肌肉兴奋的最小刺激为阙刺激)2刺激的作用时间(足够时间)3刺激强度变化率(刺激电流由无到有或由大到小的变化率)

骨骼肌的收缩形式:根据肌肉收缩时的长度变化分四种。1向心收缩(肌肉收缩时长度缩短的收缩。向心收缩时肌肉长度缩短、起止点相互靠近,引起身体运动。且,肌肉张力增加出现在前,长度缩短出现在后。但肌肉张力在肌肉开始收缩后即不再增加,直到收缩结束。又叫等张收缩。是做功的=负荷重量*负荷移动距离。整个运动范围内,肌肉用力最大的一点称为顶点。在此关节角度下杠杆效率最差,只有顶点处肌肉才可能达到最大力量收缩。例子:肱二头肌收缩使肘关节屈曲举起某一恒定负荷)2等长收缩(肌肉在收缩时其长度不变,这种收缩叫--。有两种情况:肌肉收缩时对抗不能克服的负荷;当其他关节由于肌肉离心收缩或向心收缩发生运动时,等长收缩可使某些关节保持一定位置,为其他关节的运动创造适宜的条件。例子:十字支撑,直角支撑)3离心收缩(肌肉在收缩产生张力的同时被拉长的收缩。可以防止运动损伤。肌肉做负功。例子:高处跳下,脚先着地,通过反射活动使股四头肌和臀大肌产生离心收缩)4等动收缩(在整个关节运动范围内肌肉以恒定的速度,且肌肉收缩时产生的力量始终与阻力相等的肌肉收缩。整个收缩过程速度恒定。自由泳的划水动作。等动练习是提高肌肉力量的有效手段。)

骨骼肌不同收缩形式的比较:1力量(肌肉收缩时产生的张力大小取决于肌肉收缩类型和收缩速度。关于离心收缩为何能产生较大张力?①牵张反射,肌肉受到外力的牵张时会反射性引起收缩。在离心收缩时肌肉受到强烈的牵张,因此会反射性引起肌肉强烈收缩。2离心收缩时肌肉中的弹性成分被拉长而产生阻力,同时肌肉中的可收缩成分也产生最大阻力。而向心收缩只有可收缩成分肌纤维在收缩时产生克服阻力的肌肉张力。)2肌电(等速向心收缩和离心收缩时,在一定范围内积分肌电与肌肉张力成正比。在负荷相同情况下,离心收缩的IEMG较向心收缩低。)3代谢(在输出功率相同的情况下,肌肉离收缩时所消耗的能量低于向心收缩,耗氧量也低,与代谢相关的生理指标低于向心)4肌肉酸痛(做退让工作时容易引起肌肉酸痛和损伤,)

骨骼肌收缩的力学表现:1绝对力量和相对力量(某一块肌肉做最大收缩时产生的张力为该肌肉的绝对肌力。相对肌力是指肌肉单位横断面积所具有的肌力。)2肌肉力量与运动(①力量—速度曲线。张力大小取决于横桥数目,收缩速度取决于能量释放速率和肌球蛋白ATP酶活性。要想得到较快的收缩速度就必须降低负荷量。②肌肉力量与运动速度。当以同样速度运动时,力量大的表现出来的力量也大。③肌肉力量与爆发力。P=maD/t)

肌纤维类型的划分:1根据收缩速度(快肌纤维和慢肌)2根据收缩及代谢特征(快缩、糖酵解型,快缩、氧化、糖酵解型和慢缩、氧化型。)3根据收缩特性及色泽(快缩白、快缩

红、慢缩红)4布茹克司(I型,II型。II型又可分IIa IIb IIc三个亚型)

不同类型肌纤维的形态特征、机能及代谢特点:一、不同肌纤维的形态特征(快肌纤维的直径较慢肌纤维大,含有较多的收缩蛋白。肌只网发达。慢肌纤维毛细血管网较快肌纤维丰富,含有较多肌红蛋白,较多线立体且体积大。慢肌纤维由较小的运动神经原支配,运动神经纤维较细,传导速度慢。快肌纤维由较大运动神经原支配,传导快)二、生理学特征(1肌纤维类型与收缩速度:快肌纤维收缩速度快。2肌纤维类型与肌肉力量:肌纤维的收缩力量与单个肌纤维的直径和运动单位中所包含的肌纤维数量有关。快肌纤维的直径大雨慢肌纤维,且快肌运动单位中所包含的肌纤维数量往往多于慢肌运动单位。因此,快肌运动单位的收缩力量明显大于慢肌运动单位。3肌纤维类型与疲劳:快肌纤维在收缩时能产生较大力量但容易疲劳。慢肌纤维抵抗疲劳能力比快肌纤维强。因为:线立体体积大,数目多,有氧代谢酶活性高,肌红蛋白含量丰富,毛细血管网发达。)三、代谢特征(慢肌纤维中氧化酶系统活性高于快肌纤维。慢肌纤维氧化反应场所—线立体体积大且多,,快肌中少。快肌中与无氧代谢有关的酶火星高。)

运动时不同类型运动单位的动员:1在以较低的强度运动时,慢肌纤维首先被动员;而在运动强度较大时,块肌纤维先动员。2为了增强快肌纤维的代谢能力,训练计划必须包括大强度的练习,如果要提高慢肌纤维的代谢能力,训练计划就要由低强度、持续时间较长的练习组成

肌纤维的类型与运动:1参加时间短、强度大的项目运动员,骨骼肌中的快肌纤维百分数较从事耐力项目员和一般人高。2从事耐力3项目的员的慢肌纤维白分比高于非耐里项目的员或一般人。3即需要耐力又需要速度的项目员,其肌肉中快肌纤维和慢肌纤维百分比相等 训练对肌纤维的影响:能使肌纤维形态和代谢特征发生较大的变化。1肌纤维选择性肥大(耐力训练可引起慢肌纤维选择性肥大,速度、爆发力训练可引起块肌纤维选择性肥大。)2酶活性改变(有选择性增强,长跑运动员的肌肉中,与氧化供能有密切关系的SDH活性高,而与糖酵解及磷酸化有关的LDH及PHOSP活性最低,短跑员相反)

肌电的研究与应用:定义:骨骼肌在兴奋时,会由于肌纤维动作电位的传导和扩布而发生电位变化称肌电。用适当的方法将骨骼肌兴奋时发生的电位变化引导、放大并记录所得到的图形叫肌电图 1利用肌电测定神经的传导速度。2利用肌电评定骨骼肌的机能状态。(①肌肉工作过程中肌电幅值的变化。肌电幅值是指肌电的信号的振幅大小。反映其指标的有:积分肌电和均方根振幅。疲劳时肌电振幅声高。②肌肉工作过程中肌电频谱变化,反映其指标的有:平均功率频率和中心频率。随疲劳加深,肌电频谱左移,平均功率频率下降)3利用肌电评价肌力(当肌肉以不同负荷进行收缩时,积分肌电同肌力成正比关系。)4利用肌电进行动作分析:多导肌电记录仪记录肌电,根据每块肌肉的放电顺序和肌电幅度,结合高速摄像等技术,对员的动作进行分析)

感受器:分布在体表或组织内部的一些专门感受机体内外环境改变的结构或装置。

感受器的一般胜利特征:1适宜刺激(每种感受器都有它最敏感的刺激,这刺激就是感受器的--)2换能作用(各种感受器可将其接受的各种形式的刺激能量转化为神经冲动传向中枢,叫--)3编码作用(能将刺激的环境信息转移到动作电位排列组合中)4适应现象(当一定强度刺激作用于感受器,其感觉神经产生的动作电位频率,将随刺激作用时间延长而逐渐减少)

感觉信息的传递:1特异性传入系统(各感受器传入的神经冲动要经过脊髓神经或脑干,上行到丘脑换神经原,并安排列顺序投射到大脑皮质特定区域,引起特异的感觉叫==)2非特异性传入系统(特异投射传入系统的神经县委竟脑干时,发出侧枝与脑干网状结构的神经原发生突触联系,通过多次更换神经原后,上行抵达丘脑内侧部再交换神经原,发出纤维弥散地投射到大脑皮质的广泛区域。功能:维持和改变大脑皮质的兴奋状态,保持机体觉醒)

大脑皮质的功能定位:各种感觉传入冲动在大脑皮质进行分析和综合,产生相应的感觉。大脑皮质的不同区域在功能上具有不同的作用。

感觉柱:皮层体表感觉区神经C的纵向排列构成大脑皮质的基本功能单位。

大脑皮质的感觉分析功能:1体表感觉(投射区位于中央后回{第一体表感觉区}。特点:感觉冲动向皮质投射呈左右交叉,但头面部感觉冲动投射到左右双侧皮质;投射区域的空间位置是倒置的{下肢的感觉区在皮质顶部,上肢感觉区在中间,头面部感觉区在低};投射区的大小与不同体表部位的感觉灵敏程度有关。)2运动感觉区(投射区域位于中央前回{四六区},可引起受试者企图发动肢体运动的主观感觉。)3视觉感觉区(位于枕叶距状裂上下缘{17 18区}如一侧枕叶损会两眼偏盲,双侧伤全盲)4听觉和前庭觉(位于慑叶的慑横回和上回{41 42区})5内脏感觉(位于第一第二感觉区)

视觉器官:折光系统(角膜房水晶状体玻璃体)感觉系统(视网膜)

视觉的形成:平行光---折光系统(折射)-----视网膜(成像)-----视网膜上的感光C将物理光刺激转化为神经冲动----经神经到丘脑----大脑皮质感觉区投射—视觉

视调节:正常人的眼球折光系统的折光能力,能随物体的移近而相应的增加,使物像落在视网膜上而看清物体,这调节过程叫---

视调节分类:1晶状体调节(是一个有弹性的组织,其调节是一个复杂神经反射活动。当看近物时,睫状肌收缩,悬韧带松弛,晶状体向前后凸出,增加曲率,使物像移到视网膜上。看远物时----。)2瞳孔调节(看近物时,可反射性引起双侧瞳孔缩小,称瞳孔调节反射。。瞳孔的大小随光线强度而改变的现象叫瞳孔对光反射。。强光-刺激---视网膜感受C---经神经纤维---中枢(中脑动眼N核)---从副交感神经传出----使瞳孔括约肌收缩----瞳孔缩小)

视网膜的感光机能:1视锥C(分布于视网膜的中央凹处,能感受强光刺激,形成明视觉,色觉。)2视杆C(分布于视网膜的周边处,对光的敏感度高,能接受弱光刺激,形成暗视觉) 视网膜的光化学反应:1视锥C和视杆C含有能吸收光能的光敏物质(感光色素)在光线的作用下能发生一系列的化学反应叫光化学反应。2视锥C中的感光色素为视锥色素,视杆C中的色素为视紫红质(分子组成为视蛋白和视黄醛)3在光的作用下视紫红质分解----全反视黄醛和视蛋白---分解过程中使视杆C去极化,并产生冲动,冲动沿神经传到大脑枕叶—产生视觉。反视黄醛+视黄醛酶—还原为VA—经眼内和肝脏有关酶催化---顺视黄醛。其跟视蛋白生成视紫红质(补充作用)

色觉:光无颜色,但作用于视网膜上的视锥C后,就能引起大脑产生色觉。

三原色学说:视网膜上有三种视锥C,分别含红绿蓝三种色光敏感的感光色素。不同波长的光线对三种感光物质的刺激不同,故可引起不同颜色。

视力:又叫视敏度,眼对物体微细结构的分辨能力,通常以分辨两点之间最小距离为标准。 视野:单眼注视正前方一点时,该眼所能看到的空间范围。鼻侧《镊侧,白》黄》红》绿。 立体视觉产生的原因:因为同一物体在两眼视网膜上所成的像并不完全相同,右眼看到的物体右侧面较多,左眼看到的左侧多。其位置虽略不同,但又在相称点附近。最后经中枢N系统综合、、、、

眼肌平衡:眼球运动靠运动眼球肌:上下直肌、内外、上下斜肌。正视:当眼注视正前方,若对称眼肌紧张度相等,眼球瞳孔在正中央处。斜视:如果其中一条眼肌紧张度稍大,瞳孔偏向一方。隐斜视:若一条眼肌紧张度虽稍大,但在平衡时靠对抗肌紧张度的加强予以补偿,瞳孔仍保持在正中央。

耳:外耳(耳廓外耳道)中耳内耳又叫迷路(耳蜗椭圆囊球囊三个半规管。后三个叫前庭器官)

听觉传播:声波---耳廓—经外耳道—鼓膜(振动)、----引起听骨链(增压效应—作用于内耳0圆窗上---内淋巴液振荡)---引起外淋巴、基底膜振动----刺激毛C产生去极化感受器电位---

通过突出传递在听N纤维末梢产生总和电位和动作电位---沿神经到皮层听觉中枢---听觉 耳蜗作用:内有一条基底膜,位于基底膜上的螺旋器是声音感受器。毛C顶部有上百条排列整齐的听纤毛,听纤毛与盖膜直接接触或埋植在盖膜的胶状物质中。基底膜振动时听纤毛弯曲,使毛C听神经产生神经冲动,冲动沿听神经传向听中枢。

位觉:身体进行各种变速运动时,引起的前庭器官中的位觉感受器兴奋并产生的感觉叫--- 前庭器的感受装置与适宜刺激:1球囊、椭圆囊和半规管之间以充有内淋巴的小细管道相联系。2球囊和椭圆囊的壁上有囊斑,囊斑中有感受性毛C,其纤毛插入耳石膜内,耳石膜表面有许多CACO3结晶称耳石。3由于重力对耳石的作用方向改变,耳石膜与毛C之间的空间位置发生改变,使毛C兴奋,冲动传到大脑皮层前庭感觉区,产生头部空间位置改变的感觉。4人做直线加速或减速耳石膜因惯性位置移—毛C纤毛弯曲兴奋—反射调节肌肉张力维持身体平衡‘冲动传到大脑皮层感觉区,空间位置变速感觉。5三个半规管互相垂直,分别称前后水平半规管。每个半规管均有壶腹,其壁上有壶腹嵴,壶腹嵴上有感受性毛C,毛C的纤毛上覆盖许多胶状物质,形如帽状,叫终帽。半规管壶腹嵴的适宜刺激是旋转正负加速度。当旋转运动开始、停止或突变速时,由于内淋巴的惯性作用,使终帽弯曲,刺激毛C而兴奋,冲动经前庭N传入中枢,产生旋转运动感觉。水平—饶垂直轴左右旋转,前后半规管—饶前后横轴。

运动生理学

1.运动生理学是研究人体在体育运动的影响下机能活动变化规律的科学。

2.人体的基本胜利特征:新陈代谢、兴奋性、应激性、适应性。

应激性:机体和一切活组织对周围环境条件的变化有发生反应的能力,这种能力和特性叫做应激性。可以引起反应的环境的变化叫刺激。

3.神经调节:特点是迅速而且精确;体液调节的特点是缓慢而广泛,作用持久。

体液调节:机体的某些细胞产生某些特殊的化学物质,包括各种内分泌腺所分泌的激素,通过细胞外液或借助于血液循环被送到一定器官和组织,以引起特有的反应,并以此调节着人体的新陈代谢,生长发育,生殖以及对肌肉活动的适应等重要机能。

4.反馈分正反馈和负反馈

5.肌肉的生理特性:兴奋性、收缩性、传导性。

6.引起兴奋的刺激条件:A刺激的强度B刺激强度的变化速率。C刺激作用时间。

8.时值:法国生理学家拉披克提出以两倍基强度的刺激作用于组织引起兴奋所需的最短时间,作为衡量兴奋性的指标。拉披克把这一特定时间称为是值。屈肌的时值比伸肌短。

9.“全和无‘’现象:用阈下刺激单个肌纤维,不能引起收缩;若用阈刺激就可以引起收缩,如果加大刺激(用阈上刺激)肌纤维的收缩幅度并不会增长,这种现象叫“全和无‘’现象。

14.跳跃式传导:在有髓鞘纤维中,它的兴奋和静息电位部位间的局部电流集中地通过邻近的朗氏结使之去极化,所以有髓鞘纤维中总是一个朗氏结兴奋,再刺激下一个朗氏结,是跳跃式的传导。

15.兴奋-收缩藕连:兴奋由神经传递给肌肉的传递过程。(神经肌肉传递):运动神经末梢去极化,改变神经膜的通透性,使Ca进入末梢内,导致突触小泡的破裂,释放出Ach,Ach经过突触间隙扩散至终膜与终膜上的受体(R)结合,形成R-Ach复合体,R-Ach是终膜去极化,产生终板电位(EPP)-(EPP)达到一定的阈限时,作用于肌膜使它发放可传播的动作电位,肌膜动作电位通过-收缩耦联引起肌纤维收缩。

16.肌纤维的兴奋-收缩过程:A肌膜的电位变化触发肌肉收缩即兴奋收缩耦联。B横桥的运动引起肌丝滑动。C引起肌收缩后的舒张。

17.单收缩的过程:潜伏期、缩短期、宽息期。

18.强直收缩:肌肉因成串刺激而发生的持续性缩短状态称强直收缩。

21.肌纤维的分类;快肌纤维(白肌纤维)、慢肌纤维(红肌纤维)

22.主要的生理特征:慢肌纤维(红肌纤维):运动神经元(小)、放电频率(低)、收缩速度(低)、耐力(高)、毛细血管密度(高)、血红蛋白含量(高)、糖酵解酶活性(低)、线粒体酶活性(高)、肌原纤维ATP酶活性(低)。白肌纤维与之相反。

23不同运动项目肌纤维百分比:短跑的快肌纤维占70%;长跑的慢肌纤维占70%。中长跑介于其中。

24.运动对肌纤维的影响:A肌纤维的选择性肥大(耐力项目引起慢肌纤维选择性肥大;速度-爆发力引起快肌纤维选择性肥大)

B肌纤维内酶活性增强 C肌纤维类型百分组成的变化。

28.血液的机能:血液的机能通过循环系统完成的。

A维持内环境的相对稳定作用。 B运输作用。 C调节作用。 D防御和保护作用。

29.渗透压:溶液促使水分子通过半透膜从浓度低的一侧向浓度高的一侧扩散的力量。称为渗透吸引力。大小决定于单位体积溶液中溶质分子或颗粒的数量。

30.等渗溶液;以血浆的正常渗透压为标准,与血浆正常渗透压很相似的溶液称等渗溶液。0。9%。氯化钠5%葡萄糖。

31.正常人血浆的PH 值7。35--7。45 平均7。4

32最主要的缓冲对 NaHCO3_----- H2CO3 20/1

34.红细胞(血红蛋白)的功能: A运输气体 O2、CO2 B缓冲血液酸碱度。

35.血红蛋白的含量;男子12-15克%;女子11-14克%。

36.运动性贫血:在训练期间(特别是训练初期)或比赛期间Hb红细胞数减少,出现暂时性贫血想象称运动性贫血。

原因:A红细胞破坏增多, B蛋白质补充不足 C由于缺铁而引起贫血。

防止:调整能动量或补充足够的蛋白质和铁。

37.合胞体:肌细胞虽有界限,但兴奋波极易彼此之间传播,在活动时有如单一细胞,在生理学上称之为”合胞体”

38.心肌的生理特性:A自动节律性。B传导性。C兴奋性。D收缩性。

39.心肌细胞收缩的特点:A对细胞外液Ca的浓度有明显的依耐性。B全或无的同步收缩C不发生强直收缩。

41.心率:每分钟心脏搏动的次数,正常安静时60-100次之间。

42。心电图的波形及意义、R、S、T。 P波表示:左右心房除极化时所产生的电变化。P-R(R-Q)期间:表示心房除极化开始到心室除极化开始所需的时间。QRS波群表示左右心室先后兴奋除极化所产生的电变化。S-T段表示心室除极完毕,复极尚未开始各部分之间无电位差。T波表示心室复极化过程中的电变化。Q-T表示心室开始兴奋除极化到全部复极化所需的时间。

心电图仅反映的是心脏兴奋的产生,传导和恢复过程中的生物电变化,仅反映心肌的兴奋,并不反映心肌的机械收缩过程。

47.运动过程中心血管的反映:A血液的重新分配B心输出量增加C血压发生变化,收缩压上升,舒张压下降。

48.心力储备:是指心输出量能随机体代谢需要而增长的能力。

49.动脉血压的形成:心室收缩射血,外周阻力,大动脉弹性。

50.心缩期只有每搏输出量的1/3即约20-30毫升的血液流向外周;其余2/3血液留在主动脉。

51.影响动脉血压的因素;A每搏输出量。B心率。C外周阻力。D大动脉管的弹性。E循环血量

52.影响静脉回流的因素:A心脏收缩。B呼吸运动。C骨骼肌的挤压作用。D重力和体位E静脉管壁的收缩。

53.减压反射:颈动脉窦及主动脉弓的压力感受性反射。(作用是一种快速控制动脉血压相对恒定的自身调节。

54.训练对心血管系统的影响:可促使人体的血管系统的形态、机能和调节能力产生良好的适应,从而提高人体工作能力。表现以下几个方面:A窦性心率徐缓。B运动性心脏增大。C心血管机能改善。

55.呼吸过程的三个环节:A外呼吸。(通气过程和换气过程)B气体运输。C内呼吸。

56.肺通气的动力是呼吸肌舒缩完成呼吸动力。呼吸形式:隔式呼吸(腹式呼吸)、肋式呼吸(胸式呼吸)、混合呼吸。

四个互不叠加的肺容量:潮气量、补吸气量、补呼气量、余气量。

57. 每分肺泡通气量=(呼吸深度-解剖无效腔《呼吸道》)*呼吸频率。

60. 血红蛋白与氧的可逆结合,氧分压高、氧结合。

61. 氧离作用:在氧分压低的组织内,氧合血红蛋白迅速放出氧,形成还原血红蛋白

.生理意义:“S”形氧离曲线的上有重要的生理意义。当氧分压在60-100 毫米汞柱一段时,坡度不大,形式平坦,而使氧分压从100毫米汞柱至80毫米汞柱时,血氧饱和度从98%降至96%。这对高原适应或轻度呼吸机能不全的人均有好处,只要能保持动脉血中氧分压自在60毫米汞柱以上,血氧饱和度仍有90%,不致造成供氧不足的严重后果。

曲线下段显示出氧分压在60毫米汞柱以下时,曲线逐渐变陡,意味着氧分压下降,使血氧饱和度明显下降。氧分压为40-10毫米汞柱时,曲线更陡,此时;氧分压稍有下降,血氧饱和度就大幅度下降,释放出大量的氧保证组织换气。这种特点对肌肉活动,保证供氧都很有利。

影响因素:CO2升高。PH值下降、体温上升,都使血红蛋白对氧的亲和力下降,氧离曲线右移,释放出更多的氧。反之氧离曲线左移。

64.氧利用率=(动脉血含量-静脉血含量)/动脉血含量*100%

66.CO2的运输。A物理运输6%。B化学结合形式: 与Hb结合7%,与血液中的Na、k结合87%

67.呼吸与酸碱平衡:(稳态结合)。P87

68。血液的化学成分的改变对呼吸运动的调节。CO2上升、O2的下降、H的上升都促进呼吸。

70。运动后过量的氧耗:a满足因剧烈运动后体温仍处于较高水平所需要的氧。b满足心脏活动仍处于较高水平所需要的氧。c满足肺功能仍处于较高水平所需要的氧d血液中茶酚胺仍处于较高水平, 也导致较多的氧。D最主要是消除乳酸氧债。

71。在运动时如何合理的运用呼吸方法:A减少呼吸道阻力。B节制呼吸频率,加大呼吸深度,提高肺泡通气量。C呼吸方法适应于技术动作变换的需要D合理运用憋气。

74.能量系统的一般特点:P115 有氧氧化供能与无氧氧化供能?P116

75.影响糖酵解能力因素有:A人体对缓冲酸性产物能力的大小。B人体各组织细胞,特别是脑细胞对酸的耐受能力大小C可能与体内糖原的含量有关。

76.运动训练与能量利用机能节省化:表现在完成同样强度的工作时,经过系统训练后,需氧量减少,能源消耗两也减少,即完成同样的运动负荷时,有训练者消耗能量减少。

77.长期训练能量节省化的主要原因:训练改进了动作技能,使动作更协调自如。自动化程度提高,减少了多余的动作,使得能量的利用更经济了;同时运动训练也提高了呼吸循环系统机能水平,工作效率提高。这样消耗于供能器官本身的能量也减少了,如在完成较小强度的运动负荷时,有训练者比无训练者的心率较低;呼吸频率较少,因而心脏及呼吸器官消耗的

能量也就较少。主要意义:从能量消耗的观点来看,能量利用愈节省,运动效率也愈高,这就为取得优异成绩创造了有利条件,特别是对持续时间长,总需能量大的运动项目来讲,就更是如此。

78.散热过程:A绝大部分的热量由皮肤散发。B小部分由呼吸道蒸发散热。C少量的热量用来加温吸入的冷空气或冷饮冷食D随尿和粪排泄而散发。

皮肤散热的四种方式:A辐射B传导C对流D蒸发。

79.运动时体温的变化和调节;在高温下如何调节体温。()新书)

80.应激:应激是机体应付任何需要时的非特异性反应。

81.感受器的一般生理特性:A适宜刺激B换能作用。

82.视杆细胞对暗光有感受能力。视锥细胞对强光和颜色有感受能力。

83.透明的角膜、房水、晶状体和玻璃体构成折光系统。

84.晶状体调节P155

85.视紫红质:视杆细胞中含有一种淡紫红色的结合蛋白质称视紫红质;

86.中央视觉:视锥细胞多的中央部分,一方面感色能力强,同时清晰地分辨物体,用这部分看东西称为中央视觉。

周围视觉:视杆细胞多的边缘部分视野范围广,故能用于观察空间范围和正在运动的物体称为周围视觉。

87.立体视觉:用单眼视物时,只能看到物体的平面,即只能看到物体的高度和宽度。若用双眼视物时,能补充地看到物体的深度,从而形成立体视觉。

88.三原色学说:红、绿、蓝或紫。

89.正视:当眼向远方注视时,若对称的眼肌紧张度相等,则眼球瞳孔在正前方称为正视。 斜视:若对称的眼肌中,其中一条肌肉紧张度大,一侧瞳孔偏向一方,称为斜视。

隐斜视:有的人某一条眼肌的紧张度虽然稍大,在平时能由某对抗肌紧张度稍大加强来加以补偿,瞳孔仍能保持在正中位置称为隐斜视。

90。行波学说解释(看)

91.椭圆囊与球囊内的囊斑的适宜刺激为耳石重力作用与直线运动的加速度。

半规管中壶腹峭毛细胞的适宜刺激是旋转运动的加速度。

92.眼球震颤:身体绕着纵轴旋转时,就可以看到眼球有规律的运动,起先朝旋转方向相反的一面逐渐慢移动,隔一定时间就回跳一下,这个现象叫做眼球震颤。

93.前庭器官的稳定性:由刺激前庭器官器,产生神经冲动引起机体的各种前庭反应的强度叫前庭器官的稳定性。。

94.提高前庭器官机能的训练方法:主动训练法、被动训练法、综合训练法。

95.肌梭可以感受肌肉的长度,腱梭可以感知肌肉的张力大小。

96.兴奋性突触后电位:在兴奋性突触,每当突触前神经元的神经冲动传至轴突终末时,引起突触小泡释放递质,递质与突触后膜受体结合后,提高了后膜对Na、k、Cl尤其是Na 的通透性,产生突触后膜局部去极化,这种局部电位变化叫EPSP

97.抑制性突触后电位(IPSP)在抑制性突触,每当突触前神经元的神经冲动,传至轴突终末时,引起突触小泡释放递质,递质与后膜受体相结合后,提高了K和Cl的通透性,使突触后膜出现超极化,这个局部电位叫做IPSP

98.突触的传递过程:突出前末梢兴奋-释放兴奋性递质-兴奋性突触后电位(突触后膜去极化)-突触后神经兴奋。突出前末梢兴奋-释放抑制性递质-抑制性突触后电位(突触后膜超极化)-突触后神经抑制。

99.反射中枢――细胞群

兴奋通过反射中枢的特征:a单向传导b中枢延搁c兴奋总和d兴奋后作用e兴奋的扩散f兴

奋的节律化

100.突触后抑制:是由兴奋性神经元与后继的神经元构成抑制性突触的活动引起的一种抑制。 101.交互抑制:某一中枢兴奋时,在功能上与它相对抗的中枢发生抑制,这种抑制现象叫交互抑制

102.牵张反射:当骨骼肌受到外力牵拉时,该肌就产生反射性收缩,这种反射称为牵张反射,两种类型-腱反射、肌紧张。

103.Y-环路:当肌肉收缩时,这种由于Y运动神经元的活动,通过肌梭传入,引起支配同一肌肉a运动神经元的活动和肌肉收缩的反射过程,称为Y-环路。

104.腱反射是由于快速牵拉肌腱时发生的牵张反射。

肌紧张是指缓慢持续牵拉肌肉收缩时发生的牵张反射,其表现为受牵拉的肌肉发生肌肉紧张性的收缩,故又称紧张性牵张反射。肌紧张对于维持躯体的姿势非常重要。

105.姿势反射:动物和人为维持身体基本姿势而发生肌肉紧张张力的重新调整的反射活动,统称为姿势反射。

静位反射:是由于头部姿势改变时所引起的一种姿势反射。分为状态反射和翻正反射。 状态反射;是由于头部位置改变时反射性地引起四肢肌肉张力重新调整的一种反射。

状态反射的规律:A头部后仰,引起上下肢及背部伸肌紧张性加强,因此四肢伸直,背部挺直。B头部前倾:引起同侧上下肢伸肌紧张性减弱,因此四肢弯曲。C头部侧倾或扭转:引起同侧上下肢伸肌紧张性加强,异侧上下肢伸肌紧张紧张性减弱。

翻正反射:当人或动物处于不正常体位时,通过一系列协调运动将体位恢复常态的反射活动,称翻正反射。

106:条件反射与非条件反射。

非条件反射:a先天的遗传的b种族所有的c任何条件下发生的d固定的神经联系e大脑皮质下部位可实现。

条件反射:后天的、生活中获得的。个体所有的,在一定条件下形成的,暂时的神经联系。高等动物主要通过大脑皮质实现。两者a都是反射活动。B都是完整的反射弧。

107.建立条件反射的条件:a大脑皮质处于良性兴奋状态b条件刺激要在非条件刺激之间出现,并且两者必须结合一段时间。C条件反射建立快慢同条件刺激和非条件刺激的性质和强度有关。D建立条件反射时应尽量避免其他因素的干扰。

108.第一信号系统:对第一信号(现实的具体信号)发生反应的皮质机能系统。

第二信号系统:对第二信号(抽象的语言信号是在具体信号的基础上建立起来的,是具体信号的信号)发生反应的皮质机能系统叫第二信号系统。

第二信号系统的意义:a极大地丰富了人体对外界各种事物的认识。B不仅是语言活动的生理基础,也是人类思维活动的生理基础,正是这种抽象的思维能力,使人从动物区分出来。C体育运动教学和训练中有重要的意义。

109.运动技能是指人体运动中掌握和有效地完成专门动作的能力,也就是指在准备的时间和空间里正确的运用肌肉的能力。

运动机能和身体素质的关系:体育运动的发展和提高,要求人们有良好的身体素质和运动水平,身体素质的发展,在于人体机能能力的不断扩大和增强,而运动技术水平的提高,则在于运动技能的不断改进和创新,随着运动技能的形成,同时身体素质也得到发展,身体素质提高了,对进一步改善运动技能又打下了基础,所以两者相辅相成,相互影响的。

110.随着运动的生理机理是暂时性神经联系。形成运动技能就是建立复杂的、链锁的、本体感受性的运动条件反射。

111.运动动力定型,学会运动技能后,大脑皮质运动中枢支配的部分肌肉活动的神经元在机能上,进行排列组合,兴奋和抑制在运动中枢内有顺序地,有规律地,有严格时间间隔地交

替发生,形成一个系统,成为一定的形式和格局,使条件反射系统化,大脑皮质机能的这种系统性称为运动动力定型。运动技能的形成就是建立运动动力定型的结果。

112.形成运动技能的过程:泛化阶段、分化阶段、巩固过程。

113.自动化:就是练习某一成套动作时,可以在无意识的条件下完成,其特征是对整个动作或是对动作的某些环节,暂时变得无意识。

114.影响运动技能形成与发展的因素:a充分利用各感觉机能间的相互作用。B充分利用两个信号系统的相互作用c促进分化抑制的发展。D消除防御反射。E充分利用运动技能间的相互作用。

115.身体素质:通常把人体在运动活动中所表现出来的力量、速度、耐力等机能能力称为身体素质。

116.决定力量大小的生理基础:a肌纤维的横断面积。B肌纤维类型和运动单位。C肌肉收缩时动员的肌纤维数量。D肌纤维收缩时的初长度。E神经系统的机能状态。F年龄和性别。G体重。

117.动力性练习与静力性练习:a动力性练习能更快地发展动力性力量。静力性练习迅速发展静力性力量b。能有效地发展肌肉横断面和肌肉中的毛细血管C动力性练习可使全动作范围的力量普遍得到发展,静力性练习则需不断更换位置,但亦可发展某一位置时的力量d动力性联系可使神经肌肉协调加强(结合动作技能的巩固)e静力性练习省时间,能量消耗较少,间歇少,使用器械也较少。

118.等动练习:利用等动练习器进行的力量练习。

超等长练习:肌肉向心收缩(肌肉收缩力大于外力时,肌肉收缩时,肌肉缩短),如果紧接着在同一肌肉的离心收缩(肌肉收缩小于外力,肌肉收缩时肌肉拉长)之后会更有力,利用这种方法进行力量训练称超等长练习。

119.离心收缩后紧接着进行向心收缩,之所以能发展更大力量原因是a肌肉弹性体产生张力变化。B肌牵张反射。

120.发展肌肉力量的原则:a大负荷原则b渐增负荷原则c专门性原则d负荷顺序原则e有效运动负荷原则f合理训练间隔原则。

121.RM(最大重复次数):是指肌肉收缩所能克服某一负荷的最大次数。

122.速度素质:是指人体进行快速运动的能力。

反应速度:是指人体对刺激发生反应的快慢。

动作速度:是指完成单个动作的时间长短。

位移速度:在周期性运动中往往以单位时间通过的距离或通过一定距离所用的时间来表示。 123. 反应速度的决定因素a感受器的敏感程度b中枢延隔c效应器(肌纤维)的兴奋d条件反射的巩固程度。

124.动作速度快慢取决于:A肌纤维的百分组成及其面积B肌力,肌力越大,就能更容易地克服阻力,C肌纤维兴奋高时刺激强度低且作用时间短就能引起兴奋D条件反射的巩固程度。 125.跑速:步长—肌力、腿长、柔韧性。步频-神经过程的灵活性、快肌及面积、肌肉放松能力、运动技能巩固能力。

126.有氧耐力:是指长时间进行有氧工作的能力。有氧耐力的生理基础:a肺呼吸b氧运输c心输出量。最大摄氧量(氧极限)是指运动时每分钟能够吸入并被身体利用的最大数量。 127.无氧阈:是指人体在递增工作强度中,由有氧代谢供能开始大量动用无氧代谢供能的临界点(转折点)常以血乳酸含量达到4毫克分子/升所对应的强度或功率来表示。

128.有氧训练的方法:持续性练习、间断性练习、高原训练法。

129.无氧耐力:是指身体处于缺氧情况下,较长时间对肌肉收缩供能的能力。

决定无氧耐力的生理基础:a肌肉内无氧酵解供能能力的提高。B缓冲乳酸的能力提高。C脑

细胞对血液酸碱度变化的耐受能力。三个因素:a无氧酵解的供能能力b血液中缓冲能力。C脑细胞耐受“酸”的能力。

130.机能变化分为:赛前状态:进入工作状态:稳定状态、疲劳和恢复五个阶段。

131.赛前状态:在赛前或运动前,人体器官、系统会产生一系列机能变化,称这时的机能状态为赛前状态。影响因素:A兴奋性过高(过度紧张)B适宜的兴奋性C过低(情绪低落) 132.准备活动:在正式比赛或比赛之前所进行的各种身体练习叫做准备活动。

目的:是在赛前状态的基础之上通过各种练习进一步为正式训练或比赛做好机能上的准备。 作用;a代谢水平提高,使体温上升b提高循环、呼吸等内脏器官机能水平c促进参与运动有关中枢的协调d可调节赛前状态,使大脑皮质兴奋处于适宜水平。

如何作准备活动;准备活动的量和强度应较正式的运动小,以避免由于运动影响运动成绩,以微微出汗及自感已活动开为宜。控制好间隔时间,是准备活动经休息后,身体机能水平正好处于超量恢复的上升阶段。内容:包括一般准备活动和专门性准备活动。

133.痕迹效应:?

134.进入工作状态:无论在日常生活,生产劳动或进行体育运动时,人的机能能力和工作效率都不能在活动一开始就达到最高水平,而是在活动开始后一段时间内逐步提高的,这个逐步提高的过程叫进入工作状态。

产生进入工作的原因:人体生理的惰性。A完成任何一项反射活动都需要一定的时间b内脏器官的生理惰性。

影响进入工作状态的因素:a时间b工作性质c个人特点

135.极点:在进行剧烈运动时,由于在运动开始阶段内脏器官的活动赶不上运动器官的需要,往往产生一种非常难受的感觉,此时感到呼吸困难,肌肉酸疼、动作迟缓]精神低落、简直不愿再运动下去,这种状态叫极点。

第二次呼吸:出现极点后,如果运动者不停止运动,而是靠意志和毅力坚持下去,同时稍放慢动作速度,有意识地呼吸,过不久就会度过一难关,难受的感觉减轻或着消失,呼吸又变得轻松自如而有节奏,运动能力得到更充分的发挥。

136.稳定状态:在一定强度的周期运动中,当进入工作状态结束后,各器官系统的机能活动(就达到一种稳定状态,工作能力也稳定在一个相应的水平)这种机能状态就称稳定状态。 真稳定状态:进行亚极量运动时,摄氧量可满足需氧量的要求,运动中依靠有氧供能,几乎没有氧债的积累,这时器官系统的机能活动水平所处的稳定状态称为真稳定状态。

假稳定状态:当运动的需氧量超过人体实际摄氧水平时,尽管呼吸与循环系统的机能活动也达到很高的水平,但机体摄入的氧量仍满足不了需氧量的要求,有氧债积累,在这种缺氧条件下无氧酵解参加供能,使乳酸大量产生,这时虽然各项生理机能仍能满足运动的需氧量,故称假稳定状态。

137.疲劳:机体不能保持在某一特定水平,或者不能维持某一预定的运动强度。

138.疲劳产生的原因:a“衰竭”学说b堵塞学说c内环境稳定性失调学说d保护抑制学说e突变学说。

139.判断疲劳的方法:a生理学指标(肌力、心电图、脑电图、肌电图、肺活量、血压体位反射、皮肤空间阈、视觉闪光融合阈等测定)b运动医学检查(台阶试验、联合机能试验)c教育学观察与自我感觉

140.恢复过程运动中所消耗掉的物质和器官系统下降了的机能,通常经过一段时间休息都能恢复到运动前的水平,这段时间所发生的机能变化叫做恢复过程。

141.恢复过程的阶段性:第一阶段,运动时物质消耗过程占优势,恢复过程虽也进行,但当时是消耗大于恢复,所以使能量物质减少,各器官系统的工作能力下降。第二阶段,运动后消耗过程减弱,恢复过程占明显优势,这时能源物质及各器官系统的机能能力逐渐恢复到原来

水平。第三阶段:在这个阶段运动时消耗掉的物质及各器官系统的机能恢复得超过原有水平,这个阶段也叫超量恢复阶段,超量恢复保持一段时间又回到原有水平。

142.运动效果:是指经常从事运动练习的人在重复运动的影响下各器官系统形态、结构和机能所产生的适应变化及良好反应。

143.评价训练程度时应注意:a运动员的个性特点。B运动项目的特点c运动年限特点d生理指标“变异性”特点e生物节律特点。

144.安静状态时训练程度的生理指标(某一系统评价)A运动系统a骨骼与关节b肌肉B氧运输系统a血液b心脏血管c呼吸。

145.不同训练程度的人体对定量负荷的反应。A有训练者工作开始时的机能动员快B有训练者工作时生理机能反应较低,而且是稳定状态C工作结束后的恢复阶段明显缩短a中枢神经系统b运动器官c心肺功能。

146.最大运动负荷时训练程度的标志:a最大摄氧量和氧脉搏b氧债和无氧阈c连续心音现象。 147.连续心音:运动员在进行特殊的剧烈的机能测验时,在恢复期内呈现1-3分钟的动脉血压的“零点”现象。即动脉血压的“零点”现象。

148.为什么要对运动员进行机能评定。如何进行运动机能评价?

A生理指标检查;晨脉、血压、体重、心电图、肌电图、脑电图、定量负荷b运动员的自我感觉及教育学观察。

149.心率和血压在实践中的运用。(心率控制强度)P105-106

150.儿童少年解剖生理的一般特点和体育教学与训练?P262

151.儿童少年身体素质的发展规律:a身体素质的自然增长b身体素质发展的阶段性(速度素质最先-耐力素质次之-力量素质最晚)c各项身体素质发展的敏感期或增快期。D各项身体素质达到最高水平的年龄。E力量素质和耐力素质发展与年龄特征。

152.瓦尔沙瓦现象:体操练习中静力性工作产生憋气,血压随动作的进行和恢复出现特殊变化的规律,

其特征表现为:血压先升高后降低,再上升,而后恢复到运动前水平:血液量也呈现先少、后多,再恢复常量。称这种变化为瓦尔沙瓦现象。

“林加尔德”现象:在体操练习中,有很多支撑、悬垂,折体、回环等动作,常常要求胸廓与腹壁等部位同时或交替固定,因而使呼吸肌的活动受到限制,造成运动困难,丹麦生理学家林加尔德发现,在进行静止用力动作时,呼吸和循环机能变化没有运动后明显,这种生理方应称为林加尔德现象。


相关文章

  • 骨骼肌细胞动作点位的产生对肌肉收缩的影响
  • 骨骼肌细胞动作点位的产生对肌肉收缩的影响 动作电位 (一)动作电位的概念 可兴奋细胞兴奋时,细胞内产生的可扩布的电位变化称为动作电位.动作电位是一个连续的电位变化过程.另外,它在细胞的某一部位一旦产生,就会迅速向四周扩布.动作电位是在静息电 ...查看


  • 对动作电位变化图的分析
  • 对动作电位变化图的分析 1 各个阶段变化原因: 1.1 膜内外的离子分布 细胞内外离子分布不均匀是静息电位和动作电位形成的基础,这种分布不均匀与钠钾泵的作用密不可分.钠钾泵是一种普遍存在于动物各种细胞膜上的特异性蛋白质,这种载体蛋白每分解一 ...查看


  • 神经干.肌膜动作电位和骨骼肌收缩同步观察
  • 实验设计:神经干.肌膜动作电位和骨骼肌收缩同步观察 一.实验目的 通过同步记录神经干.肌膜动作电位和骨骼肌收缩,学习多信号记录技术.观察神经-肌接头兴奋传递和骨骼肌兴奋的电变化与收缩之间的时间关系及其各自的特点.观察滴加高钾试剂后对于神经干 ...查看


  • 第二章细胞的基本功能(复习思考题)
  • 第二章 细胞的基本功能 复习思考题 一.填空题 1. 细胞膜跨膜物质转运主要有 单纯扩散 . 异化扩散 . 主动转运 . 出胞和入胞 四种.其中易化扩散有 载体介导的异化扩散 和 通道介导的异化扩散 两种类型,主动转运包括 原发性主动转运 ...查看


  • [生理学]_第二节 心肌的生物电现象和生理特征_中医世家
  • 第二节 心肌的生物电现象和生理特征 心房和心室不停歇地进行有顺序的.协调的收缩和舒张交替的活动,是心脏实现泵血功能.推动血液循环的必要条件,而细胞膜的兴奋过程则是触发收缩反应的始动因素.本节需要阐述的问题是:引起心脏收缩活动的兴奋来自何处? ...查看


  • 动作电位产生机理及神经肌肉兴奋性的影响因素
  • ・62・生堑堂塾堂!!!兰生(筮!!鲞2筮!塑 动作电位产生机理及神经肌肉兴奋性的影响因素 许献军(浙江省上虞市东关中学312351) 摘要本文介绍了神经肌肉静息电位.动作电位产生的机理和对电位的记录方式,以及K+.Na+.Ca2+.M92 ...查看


  • 第三章第一节神经冲动的产生与传导
  • 第三章 动物稳态维持的生理基础 第一节 神经冲动的产生与传导 课前导学 知识回顾 1.神经系统结构和功能的基本单位---神经元(神经细胞) (1) 结构 (2)功能: 接受刺激,产生兴奋,并 _________ 兴奋,能够传导的兴奋叫神经冲 ...查看


  • 神经冲动的传导 Microsoft Word 文档
  • 细胞电现象 静息电位: 在静息状态下,细胞膜两侧的离子呈不均衡分布,膜内的钾离子高于膜外,膜内的钠离子和氯离子低于膜外,即胞内为高钾.低钠.低氯的环境.此外,有机阴离子仅存在于细胞内.细胞内钾离子浓度约为细胞外钾离子浓度的30倍,相反细胞外 ...查看


  • 生理学 第二章 总结
  • 第二章 细胞 名词解释 单纯扩散:是一种简单的穿越质膜的物理扩散,没有生物学转运机制参与,不耗能. 被动转运:被动转运本身不需要消耗能量,是物质顺浓度梯度和(或)电位梯度进行的跨膜转运. 原发性主动转运:是指离子泵利用分解ATP 产生的能量 ...查看


  • 运动生理学(第二章)
  • 第二章 肌肉收缩 (一)单选题 1.在完整机体内各种形式的躯体运动得以实现,都依赖于( ). A.骨骼肌的紧张性收缩:B.骨骼肌的收缩和舒张: C.中枢神经系统的精细调节:D.神经系统控制下的骨骼肌活动. 2.细胞具有兴奋性,表现为在有效刺 ...查看


热门内容