传染病传播模型综述

1000-6788(2011)09-1736-09

N949;R131

传染病传播模型综述

张发1,2李璐2

宣慧玉21.空军工程大学工程学院,西安710038;2.西安交通大学管理学院,西安710049

建立传染病传播模型是理解传染病流行机理,预测流行趋势,进行防控决策的基础.将传染病传播模型分为单一群体模型,复合群体模型和微观个体模型三类.单一群体模型从宏观角度刻画了集计量的变化,以经典的SIR为基础,在仓室设置、年龄结构、随机性、异质性等方面进行了扩展.复合群体模型将人群划分为多个子群体,子群体之间因人口流动而耦合,适合研究具有空间异质性的跨地区传播问题.微观个体模型的出发点是个体状态和行为,所有个体形成接触网络.这类模型有理想网络和现实网络两个研究方向,理想网络关注接触网络特性对传染病传播动力学的影响,现实网络致力于揭示社会接触的实际特征,构建足够真实的模拟网络,研究传染病的传播.这三类模型各有特点,分别具有各自的适用领域,应根据研究目的和问题特点选择合适的建模方法.

传染病模型;仓室;复合群体;接触网络;综述

Survey of transmission models of infectious diseases

ZHANG Fa

LI LuXUAN Hui-yu

2010-01-14

国家自然科学基金(70971106);中国博士后科学基金(20070421118)

作者简介:张发(1970-),男,副教授,博士后,研究方向复杂系统仿真,E-mail: richter2000@163.com;李璐(1977-),男,博士后,研究方向管理系统仿真,E-mail: lu.lee05@gmail.com;宣慧玉(1942-),女,教授,博士生导师,研究方向系统仿真,E-mail:xuanhy@mail.xjtu.edu.cn.

1737

1738

1739

1740

1741

@@[1] Grassly N C, Fraser C. Mathematical models of infectious disease transmission[J]. Nature Reviews Microbiology,

    2008, 6(6): 477-487.

@@[2] Keeling M J, Rohani P. Modeling Infectious Diseases in Humans and Animals[M]. New Jersey: Princeton Uni

    versity Press, 2007.

@@[3] Anderson R M, May R M. Infectious Diseases of Humans, Dynamics and Control[M]. New York: Oxford Uni    versity Press, 1992.

@@[4] Riley S. Large-scale spatial-transmission models of infectious disease[J]. Science, 2007, 316(June 1): 1298-1301.

@@[5] Koopman J. Modeling infection transmission[J]. Annual Review on Public Health, 2004, 25: 303-326.@@[6] Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics, part I[J]. Proceedings 

    of the Royal Society of London A, 1927, 115: 700-721.

@@[7] Castillo-Chavez C, Castillo-Garsow C W, Yakubu A A. Mathematic models of isolation and quarantine[J]. Journal 

    of the American Medical Association, 2003, 290(21): 2876-2877.

@@[8]蔡全才,等.定量评价SARS干预措施效果的传播动力学模型[J].中华流行病学杂志,2005,26(3):153-158.

     Cai Q C, et al. To develop a model on severe acute respiratory syndrome epidemics to quantitatively evaluate 

     the effectiveness of intervention measure[J]. Chinese Journal of Epidemiology, 2005, 26(3): 153-158. @@[9] Riley S, Fraser C, Donnelly C A, et al. SARS in Hong Kong: Impact of public health transmission dynamics of 

     the etiological agent of interventions[J]. Science, 2003, 300(June 20): 1961-1966.

@@[10] Nu(n)o M, Chowell G, Gumel A B. Assessing the role of basic control measures, antivirals and vaccine in curtailing 

     pandemic influenza: Scenarios for the US, UK and the Netherlands[J]. Journal of the Royal Society Interface,

      2007, 4(14): 502-521.@@[11] Fraser C, Donnelly C A, Cauchemez S, et al. Pandemic potential of a strain of influenza A(H1N1): Early       findings[J]. Science, 2009, 324(5934): 1557-1561.@@[12] Hoppensteadt F. Mathematical Theories of Populations: Demographics, Genetics and Epidemics[M]. Philadel      phia: SIAM, 1975.

@@[13] Rouderfer V, Becker N. Assessment of two-dose vaccination schedules: Availability or vaccination and catch-up[J].

      Mathematical Biosciences, 1995, 129(1): 41-66.@@[14] McKendrick A G. Applications of mathematics to medical problems[J]. Proceedings of the Edinburgh Mathe      matical Society, 1926, 44: 98-130.@@[15] Isham V. Stochastic Models for Epidemics[M]//Davison A C, Dodge Y, Wermuth N. Celebrating Statistics:      Papers in Honor of Sir David Cox on his 80th Birthday. Oxford: Oxford University Press, 2005: 171-177.@@[16] Nasell Ⅰ. Stochastic models of some endemic infections[J]. Mathematical Biosciences, 2002, 179(1): 1-19.

@@[17] Lajmanovich A, Yorke J A. A deterministic model for gonorrhea in a nonhomogeneous population[J]. Mathe      matical Biosciences, 1976, 28(3/4): 221-236.@@[18] Gonzalez M C, Hidalgo C A, Barabási A L. Understanding individual human mobility patterns[J]. Nature, 2008,

      453(7196): 779-782.@@[19] Grenfell B, Harwood J. (Meta)population dynamics of infectious disease[J]. Tree, 1997, 12(10): 395-399.@@[20] Hanski I. Metapopulation theory, its use and misuse[J]. Basic and Applied Ecology, 2004, 5(3): 225-229.@@[21] Wang W, Mulone G. Threshold of disease transmission in a patch environment[J]. Journal of Mathematical       Analysis and Applications, 2003, 285(1): 321-335.

@@[22] Castillo-Chavez C, Yakubu A A. Dispersal, disease and life-history evolution[J]. Mathematical Biosciences, 2001,

      173(1): 35-53.

@@[23] Cross P C, Johnson P L F, Lloyd-Smith J O, et al. Utility of R-0 as a predictor of disease invasion in structured 

      populations[J]. Journal of the Royal Society Interface, 2007, 4(13): 315-324.

@@[24] Colizza V, Vespignani A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern:

      Theory and simulations[J]. Journal of Theoretical Biology, 2008, 251(3): 450-467.

@@[25] Watts D J, Muhamad R, Medina D C, et al. Multiscale, resurgent epidemics in a hierarchical metapopulation       model[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(32):

      11157-11162.

@@[26] Colizza V, Barrat A, Barthélemy M, et al. The role of the airline transportation network in the prediction and 

      predictability of global epidemics[J]. Proceedings of the National Academy of Sciences of the United States of 

      America, 2006, 103(7): 2015-2020.

@@[27] Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in a globalized world[J]. Proceedings of 

     the National Academy of Sciences of the USA, 2004, 101(42): 15124-15129.

@@[28] Wallinga J, Edmunds W J, Kretzschmar M. Perspective: Human contact patterns and the spread of airborne      infectious diseases[J]. Trends in Microbiology, 1999, 7(9): 372-377.

@@[29] Liljeros F, Edling C R, Amaral L A N. Sexual networks: Implications for the transmission of sexually transmitted 

     infections[J]. Microbes and Infection, 2003, 5(2): 189-196.

@@[30] Keeling M J. The implications of network structure for epidemic dynamics[J]. Theoretical Population Biology,

     2005, 67(1): 1-8.

@@[31] Keeling M J, Eames K T D. Networks and epidemic models[J]. Journal of the Royal Society Interface, 2005, 2(4):

     295-307.

@@[32] Lloyd A L, May R M. Epidemiology: How viruses spread among computers and people[J]. Science, 2001,     292(5520): 1316-1317.@@[33] Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics[J]. Physics Reports, 2006,

     424(4-5): 175-308.

@@[34] Kleczkowski A, Grenfell B T. Mean-field-type equations for spread of epidemics: The ‘small world' model[J].

     Physica A: Statistical Mechanics and Its Applications, 1999, 274(1/2): 355-360.

@@[35] Moore C, Newman M E J. Epidemics and percolation in small-world networks[J]. Physical Review E, 2000, 61(5):

     5678-5682.

@@[36] Barabási A L. Scale-free networks: A decade and beyond[J]. Science, 2009, 325(5939): 412-413.

@@[37] Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001,

     86(14): 3200-3203.

@@[38] Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks[J]. Physical Review 

     E, 2001, 63(6): 066117.

@@[39] Hwang D U, Boccaletti S, Moreno Y, et al. Thresholds for epidemic outbreaks in finite scale-free networks[J].

     Mathematical Biosciences and Engineering, 2005, 2(2): 317-327.

@@[40] Pastor-Satorras R, Vespignani A. Epidemic dynamics in finite size scale-free networks[J]. Physical Review E,

     2002, 65(3): 035108.@@[41] Klemm K, Eguíluz V M. Highly clustered scale-free networks[J]. Physical Review E, 2002, 65(3): 036123.@@[42] Klemm K, Eguíluz V M. Growing scale-free networks with small-world behavior[J]. Physical Review E, 2002,

     65(5): 057102.@@[43] Newman M E J. Spread of epidemic disease on networks[J]. Physical Review E, 2002, 66(1): 016128.@@[44] Kuperman M, Abramson G. Small world effect in an epidemiological model[J]. Physical Review Letters, 2001,

     86(13): 2909.

@@[45] May R M, Lloyd A L. Infection dynamics on scale-free networks[J]. Physical Review E, 2001, 64(6): 066112.@@[46] Newman M E J, Park J. Why social networks are different from other types of networks[J]. Physical Review E,

     2003, 68(3): 036122.

@@[47] Moreno Y, Gómez J B, Pacheco A F. Epidemic incidence in correlated complex networks[J]. Physical Review E,

     2003, 68(3): 035103.

@@[48] Meyers L A, Newman M E J, Pourbohloul B. Predicting epidemics on directed contact networks[J]. Journal of 

     Theoretical Biology, 2006, 240(3): 400-418.

@@[49] Ball F, Neal P. Network epidemic models with two levels of mixing[J]. Mathematical Biosciences, 2008, 212(1):

     69-87.

@@[50] Toroczkai Z, Guclu H. Proximity networks and epidemics[J]. Physica A, 2007, 378(1): 68-75.

@@[51] Callaway D S, Newman M E J, Strogatz S H, et al. Network robustness and fragility: Percolation on random 

     graphs[J]. Physical Review Letters, 2000, 85(25): 5468.

@@[52] Pastor-Satorras R, Vespignani A. Immunization of complex networks[J]. Physical Review E, 2002, 65(3): 036104.@@[53] Cohen R, Havlin S, Ben-Avraham D. Efficient immunization of populations and computers[J]. Physical Review 

     Letters, 2003, 91(24): 247901.

@@[54] Hayashi Y, Minoura M, Matsukubo J. Oscillatory epidemic prevalence in growing scale-free networks[J]. Physical 

     Review E, 2004, 69(1): 016112.

@@[55] Xu Z, Sui D Z. Effect of small-world networks on epidemic propagation and intervention[J]. Geographical Analysis,

     2009, 41(3): 263-282.

@@[56] Vannucchi F S, Boccaletti S. Chaotic spreading of epidemics in complex networks of excitable units[J]. Mathe

     matical Biosciences and Engineering, 2004, 1(1): 49-55.

@@[57] Albert R, Jeong H, Barabási A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(6794):

     378-382.

@@[58] Eames K T D, Keeling M J. Contact tracing and disease control[J]. Proceedings of the Royal Society B: Biological 

     Sciences, 2003, 270(1533): 2565-2571.

@@[59] Kiss I Z, Green D M, Kao R R. Disease contact tracing in random and clustered networks[J]. Proceedings of the 

     Royal Society B: Biological Sciences, 2005, 272(1570): 1407-1414.

@@[60] Tsimring L S, Huerta R. Modeling of contact tracing in social networks[J]. Physica A, 2003, 325(1-2): 33-39.@@[61] Kiss I Z, Green D M, Kao R R. Infectious disease control using contact tracing in random and scale-free net

     works[J]. Journal of the Royal Society Interface, 2006, 3(6): 55-62.

@@[62] Kiss I Z, Green D M, Kao R R. The effect of network mixing patterns on epidemic dynamics and the efficacy of 

     disease contact tracing[J]. J R Soc Interface, 2008, 5: 791-799.@@[63] Read J M, Eames K T D, Edmunds W J. Dynamic social networks and the implications for the spread of      infectious disease[J]. Journal of the Royal Society Interface, 2008, 5(26): 1001-1007.

@@[64] Fu Y C. Measuring personal networks with daily contacts: A single-item survey question and the contact diary[J].

     Social Networks, 2005, 27(3): 169-186.

@@[65] Valle S Y D, Hyman J M, Hethcote H W, et al. Mixing patterns between age groups in social networks[J]. Social 

     Networks, 2007, 29(4): 539-554.

@@[66] Mossong J, Hens N, Jit M, et al.  Social contacts and mixing patterns relevant to the spread of infectious 

     diseases[J]. PLoS Medicine, 2008, 5(3): e74.

@@[67] Halloran M E, Longini I M, Nizam A, et al. Containing bioterrorist smallpox[J]. Science, 2002, 298(5597):

      128-132.

@@[68] Milne G J, Kelso J K, Kelly H A, et al. A small community model for the transmission of infectious diseases:     Comparison of school closure as an intervention in individual-based models of an influenza pandemic[J]. PLoS 

     ONE, 2008, 3(12): e4005.

@@[69] Eubank S, Guclu H, Kumar V S A, et al. Modelling disease outbreaks in realistic urban social networks[J].

     Nature, 2004, 429(6988): 180-184.

@@[70] Germann T C, Kadau K, Longini I M, et al. Mitigation strategies for pandemic influenza in the United States[J].

     Proceeings of the National Academy of Sciences of the United States of America, 2006, 103(15): 5935-5940.@@[71] Ferguson N M, Cummings D A T, Cauchemez S, et al. Strategies for containing an emerging influenza pandemic 

     in Southeast Asia[J]. Nature, 2005, 437(7056): 209-214.

@@[72] Longini I M, Nizam A, Xu S F, et al. Containing pandemic influenza at the source[J]. Science, 2005, 309(5737):

      1083-1087.

传染病传播模型综述

作者:作者单位:刊名:英文刊名:年,卷(期):

张发, 李璐, 宣慧玉, ZHANG Fa, LI Lu, XUAN Hui-yu

张发,ZHANG Fa(空军工程大学工程学院,西安710038;西安交通大学管理学院,西安710049), 李璐,宣慧玉,LILu,XUAN Hui-yu(西安交通大学管理学院,西安,710049)系统工程理论与实践

Systems Engineering —Theory & Practice2011,31(9)

1.Germann T C;Kadau K;Longini I M Mitigation strategies for pandemic influenza in the United States[外文期刊] 2006(15)2.Castillo-Chavez C;Castillo-Garsow C W;Yakubu A A Mathematic models of isolation and quarantine[外文期刊] 2003(21)3.Eubank S;Guclu H;Kumar V S A Modelling disease outbreaks in realistic urban social networks[外文期刊] 2004(6988)4.Milne G J;Kelso J K;Kelly H A A small community model for the transmission of infectious diseases:Comparison of schoolclosure as an intervention in individual-based models of an influenza pandemic 2008(12)5.蔡全才 定量评价SARS干预措施效果的传播动力学模型[期刊论文]-中华流行病学杂志 2005(03)

6.Longini I M;Nizam A;Xu S F Containing pandemic influenza at the source[外文期刊] 2005(5737)

7.Ferguson N M;Cummings D A T;Cauchemez S Strategies for containing an emerging influenza pandemic in Southeast Asia[外文期刊] 2005(7056)

8.Klemm K;Eguíluz V M Highly clustered scale-free networks 2002(03)

9.Pastor-Satorras R;Vespignani A Epidemic dynamics in finite size scale-free networks 2002(03)10.Kiss I Z;Green D M;Kao R R Disease contact tracing in random and clustered networks 2005(1570)11.Eames K T D;Keeling M J Contact tracing and disease control[外文期刊] 2003(1533)

12.Albert R;Jeong H;Barabási A L Error and attack tolerance of complex networks[外文期刊] 2000(6794)13.Vannucchi F S;Boccaletti S Chaotic spreading of epidemics in complex networks of excitable units 2004(01)14.Xu Z;Sui D Z Effect of small-world networks on epidemic propagation and intervention 2009(03)

15.Hayashi Y;Minoura M;Matsukubo J Oscillatory epidemic prevalence in growing scale-free networks[外文期刊] 2004(01)16.Riley S;Fraser C;Donnelly C A SARS in Hong Kong:Impact of public health transmission dynamics of the etiological agent ofinterventions 2003(20)

17.May R M;Lloyd A L Infection dynamics on scale-free networks[外文期刊] 2001(06)

18.Kuperman M;Abramson G Small world effect in an epidemiological model[外文期刊] 2001(13)19.Newman M E J Spread of epidemic disease on networks 2002(01)

20.Klemm K;Eguíluz V M Growing scale-free networks with small-world behavior 2002(05)21.Nasell Ⅰ Stochastic models of some endemic infections[外文期刊] 2002(01)

22.Lloyd A L;May R M Epidemiology:How viruses spread among computers and people[外文期刊] 2001(5520)23.Keeling M J;Eames K T D Networks and epidemic models 2005(04)

24.Halloran M E;Longini I M;Nizam A Containing bioterrorist smallpox[外文期刊] 2002(5597)

25.Mossong J;Hens N;Jit M Social contacts and mixing patterns relevant to the spread of infectious diseases 2008(03)26.Valle S Y D;Hyman J M;Hethcote H W Mixing patterns between age groups in social networks 2007(04)

27.Fu Y C Measuring personal networks with daily contacts:A single-item survey question and the contact diary 2005(03)28.Read J M;Eames K T D;Edmunds W J Dynamic social networks and the implications for the spread of infectious disease[外文期刊] 2008(26)

29.Kiss I Z;Green D M;Kao R R The effect of network mixing patterns on epidemic dynamics and the efficacy of disease contacttracing 2008

30.Kiss I Z;Green D M;Kao R R Infectious disease control using contact tracing in random and scale-free networks[外文期刊]2006(06)

31.Tsimring L S;Huerta R Modeling of contact tracing in social networks 2003(1-2)

32.Kermack W O;McKendrick A G Contributions to the mathematical theory of epidemics,part I[外文期刊] 192733.Keeling M J The implications of network structure for epidemic dynamics[外文期刊] 2005(01)

35.Liljeros F;Edling C R;Amaral L A N Sexual networks:Implications for the transmission of sexually transmitted infections2003(02)

36.Wallinga J;Edmunds W J;Kretzschmar M Perspective:Human contact patterns and the spread of airborne infectious diseases[外文期刊] 1999(09)

37.Castillo-Chavez C;Yakubu A A Dispersal,disease and life-history evolution[外文期刊] 2001(01)

38.Wang W;Mulone G Threshold of disease transmission in a patch environment[外文期刊] 2003(01)

39.Cohen R;Havlin S;Ben-Avraham D Efficient immunization of populations and computers 2003(24)

40.Pastor-Satorras R;Vespignani A Immunization of complex networks 2002(03)

41.Callaway D S;Newman M E J;Strogatz S H Network robustness and fragility:Percolation on random graphs[外文期刊] 2000(25)

42.Toroczkai Z;Guclu H Proximity networks and epidemics[外文期刊] 2007(01)

43.Koopman J Modeling infection transmission 2004

44.Ball F;Neal P Network epidemic models with two levels of mixing[外文期刊] 2008(01)

45.Meyers L A;Newman M E J;Pourbohloul B Predicting epidemics on directed contact networks[外文期刊] 2006(03)

46.Moreno Y;Gómez J B;Pacheco A F Epidemic incidence in correlated complex networks[外文期刊] 2003(03)

47.Newman M E J;Park J Why social networks are different from other types of networks[外文期刊] 2003(03)

48.Hanski I Metapopulation theory,its use and misuse 2004(03)

49.Keeling M J;Rohani P Modeling Infectious Diseases in Humans and Animals 2007

50.Grenfell B;Harwood J (Meta)population dynamics of infectious disease 1997(10)

51.Gonzalez M C;Hidalgo C A;Barabási A L Understanding individual human mobility patterns[外文期刊] 2008(7196)

52.Lajmanovich A;Yorke J A A deterministic model for gonorrhea in a nonhomogeneous population 1976(3/4)

53.Riley S Large-scale spatial-transmission models of infectious disease[外文期刊] 2007(1)

54.Hwang D U;Boccaletti S;Moreno Y Thresholds for epidemic outbreaks in finite scale-free networks 2005(02)

55.Pastor-Satorras R;Vespignani A Epidemic dynamics and endemic states in complex networks[外文期刊] 2001(06)

56.Pastor-Satorras R;Vespignani A Epidemic spreading in scale-free networks[外文期刊] 2001(14)

57.Barabási A L Scale-free networks:A decade and beyond[外文期刊] 2009(5939)

58.Moore C;Newman M E J Epidemics and percolation in small-world networks 2000(05)

59.Kleczkowski A;Grenfell B T Mean-field-type equations for spread of epidemics:The 'small world' model 1999(1/2)

60.Boccaletti S;Latora V;Moreno Y Complex networks:Structure and dynamics[外文期刊] 2006(4-5)

61.Hufnagel L;Brockmann D;Geisel T Forecast and control of epidemics in a globalized world[外文期刊] 2004(42)

62.Colizza V;Barrat A;Barthélemy M The role of the airline transportation network in the prediction and predictability ofglobal epidemics[外文期刊] 2006(07)

63.Watts D J;Muhamad R;Medina D C Multiscale,resurgent epidemics in a hierarchical metapopulation model 2005(32)

64.Colizza V;Vespignani A Epidemic modeling in metapopulation systems with heterogeneous coupling pattern:Theory andsimulations[外文期刊] 2008(03)

65.Cross P C;Johnson P L F;Lloyd-Smith J O Utility of R-0 as a predictor of disease invasion in structured populations2007(13)

66.Isham V Stochastic Models for Epidemics 2005

67.McKendrick A G Applications of mathematics to medical problems 1926

68.Rouderfer V;Becker N Assessment of two-dose vaccination schedules:Availability or vaccination and catch-up[外文期刊]1995(01)

69.Hoppensteadt F Mathematical Theories of Populations:Demographics,Genetics and Epidemics 1975

70.Fraser C;Donnelly C A;Cauchemez S Pandemic potential of a strain of influenza A(H1N1):Early findings[外文期刊] 2009(5934)

71.Nu(n)o M;Chowell G;Gumel A B Assessing the role of basic control measures,antivirals and vaccine in curtailing pandemicinfluenza:Scenarios for the US,UK and the Netherlands 2007(14)

本文链接:http://d.g.wanfangdata.com.cn/Periodical_xtgcllysj201109015.aspx

1000-6788(2011)09-1736-09

N949;R131

传染病传播模型综述

张发1,2李璐2

宣慧玉21.空军工程大学工程学院,西安710038;2.西安交通大学管理学院,西安710049

建立传染病传播模型是理解传染病流行机理,预测流行趋势,进行防控决策的基础.将传染病传播模型分为单一群体模型,复合群体模型和微观个体模型三类.单一群体模型从宏观角度刻画了集计量的变化,以经典的SIR为基础,在仓室设置、年龄结构、随机性、异质性等方面进行了扩展.复合群体模型将人群划分为多个子群体,子群体之间因人口流动而耦合,适合研究具有空间异质性的跨地区传播问题.微观个体模型的出发点是个体状态和行为,所有个体形成接触网络.这类模型有理想网络和现实网络两个研究方向,理想网络关注接触网络特性对传染病传播动力学的影响,现实网络致力于揭示社会接触的实际特征,构建足够真实的模拟网络,研究传染病的传播.这三类模型各有特点,分别具有各自的适用领域,应根据研究目的和问题特点选择合适的建模方法.

传染病模型;仓室;复合群体;接触网络;综述

Survey of transmission models of infectious diseases

ZHANG Fa

LI LuXUAN Hui-yu

2010-01-14

国家自然科学基金(70971106);中国博士后科学基金(20070421118)

作者简介:张发(1970-),男,副教授,博士后,研究方向复杂系统仿真,E-mail: richter2000@163.com;李璐(1977-),男,博士后,研究方向管理系统仿真,E-mail: lu.lee05@gmail.com;宣慧玉(1942-),女,教授,博士生导师,研究方向系统仿真,E-mail:xuanhy@mail.xjtu.edu.cn.

1737

1738

1739

1740

1741

@@[1] Grassly N C, Fraser C. Mathematical models of infectious disease transmission[J]. Nature Reviews Microbiology,

    2008, 6(6): 477-487.

@@[2] Keeling M J, Rohani P. Modeling Infectious Diseases in Humans and Animals[M]. New Jersey: Princeton Uni

    versity Press, 2007.

@@[3] Anderson R M, May R M. Infectious Diseases of Humans, Dynamics and Control[M]. New York: Oxford Uni    versity Press, 1992.

@@[4] Riley S. Large-scale spatial-transmission models of infectious disease[J]. Science, 2007, 316(June 1): 1298-1301.

@@[5] Koopman J. Modeling infection transmission[J]. Annual Review on Public Health, 2004, 25: 303-326.@@[6] Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics, part I[J]. Proceedings 

    of the Royal Society of London A, 1927, 115: 700-721.

@@[7] Castillo-Chavez C, Castillo-Garsow C W, Yakubu A A. Mathematic models of isolation and quarantine[J]. Journal 

    of the American Medical Association, 2003, 290(21): 2876-2877.

@@[8]蔡全才,等.定量评价SARS干预措施效果的传播动力学模型[J].中华流行病学杂志,2005,26(3):153-158.

     Cai Q C, et al. To develop a model on severe acute respiratory syndrome epidemics to quantitatively evaluate 

     the effectiveness of intervention measure[J]. Chinese Journal of Epidemiology, 2005, 26(3): 153-158. @@[9] Riley S, Fraser C, Donnelly C A, et al. SARS in Hong Kong: Impact of public health transmission dynamics of 

     the etiological agent of interventions[J]. Science, 2003, 300(June 20): 1961-1966.

@@[10] Nu(n)o M, Chowell G, Gumel A B. Assessing the role of basic control measures, antivirals and vaccine in curtailing 

     pandemic influenza: Scenarios for the US, UK and the Netherlands[J]. Journal of the Royal Society Interface,

      2007, 4(14): 502-521.@@[11] Fraser C, Donnelly C A, Cauchemez S, et al. Pandemic potential of a strain of influenza A(H1N1): Early       findings[J]. Science, 2009, 324(5934): 1557-1561.@@[12] Hoppensteadt F. Mathematical Theories of Populations: Demographics, Genetics and Epidemics[M]. Philadel      phia: SIAM, 1975.

@@[13] Rouderfer V, Becker N. Assessment of two-dose vaccination schedules: Availability or vaccination and catch-up[J].

      Mathematical Biosciences, 1995, 129(1): 41-66.@@[14] McKendrick A G. Applications of mathematics to medical problems[J]. Proceedings of the Edinburgh Mathe      matical Society, 1926, 44: 98-130.@@[15] Isham V. Stochastic Models for Epidemics[M]//Davison A C, Dodge Y, Wermuth N. Celebrating Statistics:      Papers in Honor of Sir David Cox on his 80th Birthday. Oxford: Oxford University Press, 2005: 171-177.@@[16] Nasell Ⅰ. Stochastic models of some endemic infections[J]. Mathematical Biosciences, 2002, 179(1): 1-19.

@@[17] Lajmanovich A, Yorke J A. A deterministic model for gonorrhea in a nonhomogeneous population[J]. Mathe      matical Biosciences, 1976, 28(3/4): 221-236.@@[18] Gonzalez M C, Hidalgo C A, Barabási A L. Understanding individual human mobility patterns[J]. Nature, 2008,

      453(7196): 779-782.@@[19] Grenfell B, Harwood J. (Meta)population dynamics of infectious disease[J]. Tree, 1997, 12(10): 395-399.@@[20] Hanski I. Metapopulation theory, its use and misuse[J]. Basic and Applied Ecology, 2004, 5(3): 225-229.@@[21] Wang W, Mulone G. Threshold of disease transmission in a patch environment[J]. Journal of Mathematical       Analysis and Applications, 2003, 285(1): 321-335.

@@[22] Castillo-Chavez C, Yakubu A A. Dispersal, disease and life-history evolution[J]. Mathematical Biosciences, 2001,

      173(1): 35-53.

@@[23] Cross P C, Johnson P L F, Lloyd-Smith J O, et al. Utility of R-0 as a predictor of disease invasion in structured 

      populations[J]. Journal of the Royal Society Interface, 2007, 4(13): 315-324.

@@[24] Colizza V, Vespignani A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern:

      Theory and simulations[J]. Journal of Theoretical Biology, 2008, 251(3): 450-467.

@@[25] Watts D J, Muhamad R, Medina D C, et al. Multiscale, resurgent epidemics in a hierarchical metapopulation       model[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(32):

      11157-11162.

@@[26] Colizza V, Barrat A, Barthélemy M, et al. The role of the airline transportation network in the prediction and 

      predictability of global epidemics[J]. Proceedings of the National Academy of Sciences of the United States of 

      America, 2006, 103(7): 2015-2020.

@@[27] Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in a globalized world[J]. Proceedings of 

     the National Academy of Sciences of the USA, 2004, 101(42): 15124-15129.

@@[28] Wallinga J, Edmunds W J, Kretzschmar M. Perspective: Human contact patterns and the spread of airborne      infectious diseases[J]. Trends in Microbiology, 1999, 7(9): 372-377.

@@[29] Liljeros F, Edling C R, Amaral L A N. Sexual networks: Implications for the transmission of sexually transmitted 

     infections[J]. Microbes and Infection, 2003, 5(2): 189-196.

@@[30] Keeling M J. The implications of network structure for epidemic dynamics[J]. Theoretical Population Biology,

     2005, 67(1): 1-8.

@@[31] Keeling M J, Eames K T D. Networks and epidemic models[J]. Journal of the Royal Society Interface, 2005, 2(4):

     295-307.

@@[32] Lloyd A L, May R M. Epidemiology: How viruses spread among computers and people[J]. Science, 2001,     292(5520): 1316-1317.@@[33] Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics[J]. Physics Reports, 2006,

     424(4-5): 175-308.

@@[34] Kleczkowski A, Grenfell B T. Mean-field-type equations for spread of epidemics: The ‘small world' model[J].

     Physica A: Statistical Mechanics and Its Applications, 1999, 274(1/2): 355-360.

@@[35] Moore C, Newman M E J. Epidemics and percolation in small-world networks[J]. Physical Review E, 2000, 61(5):

     5678-5682.

@@[36] Barabási A L. Scale-free networks: A decade and beyond[J]. Science, 2009, 325(5939): 412-413.

@@[37] Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001,

     86(14): 3200-3203.

@@[38] Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks[J]. Physical Review 

     E, 2001, 63(6): 066117.

@@[39] Hwang D U, Boccaletti S, Moreno Y, et al. Thresholds for epidemic outbreaks in finite scale-free networks[J].

     Mathematical Biosciences and Engineering, 2005, 2(2): 317-327.

@@[40] Pastor-Satorras R, Vespignani A. Epidemic dynamics in finite size scale-free networks[J]. Physical Review E,

     2002, 65(3): 035108.@@[41] Klemm K, Eguíluz V M. Highly clustered scale-free networks[J]. Physical Review E, 2002, 65(3): 036123.@@[42] Klemm K, Eguíluz V M. Growing scale-free networks with small-world behavior[J]. Physical Review E, 2002,

     65(5): 057102.@@[43] Newman M E J. Spread of epidemic disease on networks[J]. Physical Review E, 2002, 66(1): 016128.@@[44] Kuperman M, Abramson G. Small world effect in an epidemiological model[J]. Physical Review Letters, 2001,

     86(13): 2909.

@@[45] May R M, Lloyd A L. Infection dynamics on scale-free networks[J]. Physical Review E, 2001, 64(6): 066112.@@[46] Newman M E J, Park J. Why social networks are different from other types of networks[J]. Physical Review E,

     2003, 68(3): 036122.

@@[47] Moreno Y, Gómez J B, Pacheco A F. Epidemic incidence in correlated complex networks[J]. Physical Review E,

     2003, 68(3): 035103.

@@[48] Meyers L A, Newman M E J, Pourbohloul B. Predicting epidemics on directed contact networks[J]. Journal of 

     Theoretical Biology, 2006, 240(3): 400-418.

@@[49] Ball F, Neal P. Network epidemic models with two levels of mixing[J]. Mathematical Biosciences, 2008, 212(1):

     69-87.

@@[50] Toroczkai Z, Guclu H. Proximity networks and epidemics[J]. Physica A, 2007, 378(1): 68-75.

@@[51] Callaway D S, Newman M E J, Strogatz S H, et al. Network robustness and fragility: Percolation on random 

     graphs[J]. Physical Review Letters, 2000, 85(25): 5468.

@@[52] Pastor-Satorras R, Vespignani A. Immunization of complex networks[J]. Physical Review E, 2002, 65(3): 036104.@@[53] Cohen R, Havlin S, Ben-Avraham D. Efficient immunization of populations and computers[J]. Physical Review 

     Letters, 2003, 91(24): 247901.

@@[54] Hayashi Y, Minoura M, Matsukubo J. Oscillatory epidemic prevalence in growing scale-free networks[J]. Physical 

     Review E, 2004, 69(1): 016112.

@@[55] Xu Z, Sui D Z. Effect of small-world networks on epidemic propagation and intervention[J]. Geographical Analysis,

     2009, 41(3): 263-282.

@@[56] Vannucchi F S, Boccaletti S. Chaotic spreading of epidemics in complex networks of excitable units[J]. Mathe

     matical Biosciences and Engineering, 2004, 1(1): 49-55.

@@[57] Albert R, Jeong H, Barabási A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(6794):

     378-382.

@@[58] Eames K T D, Keeling M J. Contact tracing and disease control[J]. Proceedings of the Royal Society B: Biological 

     Sciences, 2003, 270(1533): 2565-2571.

@@[59] Kiss I Z, Green D M, Kao R R. Disease contact tracing in random and clustered networks[J]. Proceedings of the 

     Royal Society B: Biological Sciences, 2005, 272(1570): 1407-1414.

@@[60] Tsimring L S, Huerta R. Modeling of contact tracing in social networks[J]. Physica A, 2003, 325(1-2): 33-39.@@[61] Kiss I Z, Green D M, Kao R R. Infectious disease control using contact tracing in random and scale-free net

     works[J]. Journal of the Royal Society Interface, 2006, 3(6): 55-62.

@@[62] Kiss I Z, Green D M, Kao R R. The effect of network mixing patterns on epidemic dynamics and the efficacy of 

     disease contact tracing[J]. J R Soc Interface, 2008, 5: 791-799.@@[63] Read J M, Eames K T D, Edmunds W J. Dynamic social networks and the implications for the spread of      infectious disease[J]. Journal of the Royal Society Interface, 2008, 5(26): 1001-1007.

@@[64] Fu Y C. Measuring personal networks with daily contacts: A single-item survey question and the contact diary[J].

     Social Networks, 2005, 27(3): 169-186.

@@[65] Valle S Y D, Hyman J M, Hethcote H W, et al. Mixing patterns between age groups in social networks[J]. Social 

     Networks, 2007, 29(4): 539-554.

@@[66] Mossong J, Hens N, Jit M, et al.  Social contacts and mixing patterns relevant to the spread of infectious 

     diseases[J]. PLoS Medicine, 2008, 5(3): e74.

@@[67] Halloran M E, Longini I M, Nizam A, et al. Containing bioterrorist smallpox[J]. Science, 2002, 298(5597):

      128-132.

@@[68] Milne G J, Kelso J K, Kelly H A, et al. A small community model for the transmission of infectious diseases:     Comparison of school closure as an intervention in individual-based models of an influenza pandemic[J]. PLoS 

     ONE, 2008, 3(12): e4005.

@@[69] Eubank S, Guclu H, Kumar V S A, et al. Modelling disease outbreaks in realistic urban social networks[J].

     Nature, 2004, 429(6988): 180-184.

@@[70] Germann T C, Kadau K, Longini I M, et al. Mitigation strategies for pandemic influenza in the United States[J].

     Proceeings of the National Academy of Sciences of the United States of America, 2006, 103(15): 5935-5940.@@[71] Ferguson N M, Cummings D A T, Cauchemez S, et al. Strategies for containing an emerging influenza pandemic 

     in Southeast Asia[J]. Nature, 2005, 437(7056): 209-214.

@@[72] Longini I M, Nizam A, Xu S F, et al. Containing pandemic influenza at the source[J]. Science, 2005, 309(5737):

      1083-1087.

传染病传播模型综述

作者:作者单位:刊名:英文刊名:年,卷(期):

张发, 李璐, 宣慧玉, ZHANG Fa, LI Lu, XUAN Hui-yu

张发,ZHANG Fa(空军工程大学工程学院,西安710038;西安交通大学管理学院,西安710049), 李璐,宣慧玉,LILu,XUAN Hui-yu(西安交通大学管理学院,西安,710049)系统工程理论与实践

Systems Engineering —Theory & Practice2011,31(9)

1.Germann T C;Kadau K;Longini I M Mitigation strategies for pandemic influenza in the United States[外文期刊] 2006(15)2.Castillo-Chavez C;Castillo-Garsow C W;Yakubu A A Mathematic models of isolation and quarantine[外文期刊] 2003(21)3.Eubank S;Guclu H;Kumar V S A Modelling disease outbreaks in realistic urban social networks[外文期刊] 2004(6988)4.Milne G J;Kelso J K;Kelly H A A small community model for the transmission of infectious diseases:Comparison of schoolclosure as an intervention in individual-based models of an influenza pandemic 2008(12)5.蔡全才 定量评价SARS干预措施效果的传播动力学模型[期刊论文]-中华流行病学杂志 2005(03)

6.Longini I M;Nizam A;Xu S F Containing pandemic influenza at the source[外文期刊] 2005(5737)

7.Ferguson N M;Cummings D A T;Cauchemez S Strategies for containing an emerging influenza pandemic in Southeast Asia[外文期刊] 2005(7056)

8.Klemm K;Eguíluz V M Highly clustered scale-free networks 2002(03)

9.Pastor-Satorras R;Vespignani A Epidemic dynamics in finite size scale-free networks 2002(03)10.Kiss I Z;Green D M;Kao R R Disease contact tracing in random and clustered networks 2005(1570)11.Eames K T D;Keeling M J Contact tracing and disease control[外文期刊] 2003(1533)

12.Albert R;Jeong H;Barabási A L Error and attack tolerance of complex networks[外文期刊] 2000(6794)13.Vannucchi F S;Boccaletti S Chaotic spreading of epidemics in complex networks of excitable units 2004(01)14.Xu Z;Sui D Z Effect of small-world networks on epidemic propagation and intervention 2009(03)

15.Hayashi Y;Minoura M;Matsukubo J Oscillatory epidemic prevalence in growing scale-free networks[外文期刊] 2004(01)16.Riley S;Fraser C;Donnelly C A SARS in Hong Kong:Impact of public health transmission dynamics of the etiological agent ofinterventions 2003(20)

17.May R M;Lloyd A L Infection dynamics on scale-free networks[外文期刊] 2001(06)

18.Kuperman M;Abramson G Small world effect in an epidemiological model[外文期刊] 2001(13)19.Newman M E J Spread of epidemic disease on networks 2002(01)

20.Klemm K;Eguíluz V M Growing scale-free networks with small-world behavior 2002(05)21.Nasell Ⅰ Stochastic models of some endemic infections[外文期刊] 2002(01)

22.Lloyd A L;May R M Epidemiology:How viruses spread among computers and people[外文期刊] 2001(5520)23.Keeling M J;Eames K T D Networks and epidemic models 2005(04)

24.Halloran M E;Longini I M;Nizam A Containing bioterrorist smallpox[外文期刊] 2002(5597)

25.Mossong J;Hens N;Jit M Social contacts and mixing patterns relevant to the spread of infectious diseases 2008(03)26.Valle S Y D;Hyman J M;Hethcote H W Mixing patterns between age groups in social networks 2007(04)

27.Fu Y C Measuring personal networks with daily contacts:A single-item survey question and the contact diary 2005(03)28.Read J M;Eames K T D;Edmunds W J Dynamic social networks and the implications for the spread of infectious disease[外文期刊] 2008(26)

29.Kiss I Z;Green D M;Kao R R The effect of network mixing patterns on epidemic dynamics and the efficacy of disease contacttracing 2008

30.Kiss I Z;Green D M;Kao R R Infectious disease control using contact tracing in random and scale-free networks[外文期刊]2006(06)

31.Tsimring L S;Huerta R Modeling of contact tracing in social networks 2003(1-2)

32.Kermack W O;McKendrick A G Contributions to the mathematical theory of epidemics,part I[外文期刊] 192733.Keeling M J The implications of network structure for epidemic dynamics[外文期刊] 2005(01)

35.Liljeros F;Edling C R;Amaral L A N Sexual networks:Implications for the transmission of sexually transmitted infections2003(02)

36.Wallinga J;Edmunds W J;Kretzschmar M Perspective:Human contact patterns and the spread of airborne infectious diseases[外文期刊] 1999(09)

37.Castillo-Chavez C;Yakubu A A Dispersal,disease and life-history evolution[外文期刊] 2001(01)

38.Wang W;Mulone G Threshold of disease transmission in a patch environment[外文期刊] 2003(01)

39.Cohen R;Havlin S;Ben-Avraham D Efficient immunization of populations and computers 2003(24)

40.Pastor-Satorras R;Vespignani A Immunization of complex networks 2002(03)

41.Callaway D S;Newman M E J;Strogatz S H Network robustness and fragility:Percolation on random graphs[外文期刊] 2000(25)

42.Toroczkai Z;Guclu H Proximity networks and epidemics[外文期刊] 2007(01)

43.Koopman J Modeling infection transmission 2004

44.Ball F;Neal P Network epidemic models with two levels of mixing[外文期刊] 2008(01)

45.Meyers L A;Newman M E J;Pourbohloul B Predicting epidemics on directed contact networks[外文期刊] 2006(03)

46.Moreno Y;Gómez J B;Pacheco A F Epidemic incidence in correlated complex networks[外文期刊] 2003(03)

47.Newman M E J;Park J Why social networks are different from other types of networks[外文期刊] 2003(03)

48.Hanski I Metapopulation theory,its use and misuse 2004(03)

49.Keeling M J;Rohani P Modeling Infectious Diseases in Humans and Animals 2007

50.Grenfell B;Harwood J (Meta)population dynamics of infectious disease 1997(10)

51.Gonzalez M C;Hidalgo C A;Barabási A L Understanding individual human mobility patterns[外文期刊] 2008(7196)

52.Lajmanovich A;Yorke J A A deterministic model for gonorrhea in a nonhomogeneous population 1976(3/4)

53.Riley S Large-scale spatial-transmission models of infectious disease[外文期刊] 2007(1)

54.Hwang D U;Boccaletti S;Moreno Y Thresholds for epidemic outbreaks in finite scale-free networks 2005(02)

55.Pastor-Satorras R;Vespignani A Epidemic dynamics and endemic states in complex networks[外文期刊] 2001(06)

56.Pastor-Satorras R;Vespignani A Epidemic spreading in scale-free networks[外文期刊] 2001(14)

57.Barabási A L Scale-free networks:A decade and beyond[外文期刊] 2009(5939)

58.Moore C;Newman M E J Epidemics and percolation in small-world networks 2000(05)

59.Kleczkowski A;Grenfell B T Mean-field-type equations for spread of epidemics:The 'small world' model 1999(1/2)

60.Boccaletti S;Latora V;Moreno Y Complex networks:Structure and dynamics[外文期刊] 2006(4-5)

61.Hufnagel L;Brockmann D;Geisel T Forecast and control of epidemics in a globalized world[外文期刊] 2004(42)

62.Colizza V;Barrat A;Barthélemy M The role of the airline transportation network in the prediction and predictability ofglobal epidemics[外文期刊] 2006(07)

63.Watts D J;Muhamad R;Medina D C Multiscale,resurgent epidemics in a hierarchical metapopulation model 2005(32)

64.Colizza V;Vespignani A Epidemic modeling in metapopulation systems with heterogeneous coupling pattern:Theory andsimulations[外文期刊] 2008(03)

65.Cross P C;Johnson P L F;Lloyd-Smith J O Utility of R-0 as a predictor of disease invasion in structured populations2007(13)

66.Isham V Stochastic Models for Epidemics 2005

67.McKendrick A G Applications of mathematics to medical problems 1926

68.Rouderfer V;Becker N Assessment of two-dose vaccination schedules:Availability or vaccination and catch-up[外文期刊]1995(01)

69.Hoppensteadt F Mathematical Theories of Populations:Demographics,Genetics and Epidemics 1975

70.Fraser C;Donnelly C A;Cauchemez S Pandemic potential of a strain of influenza A(H1N1):Early findings[外文期刊] 2009(5934)

71.Nu(n)o M;Chowell G;Gumel A B Assessing the role of basic control measures,antivirals and vaccine in curtailing pandemicinfluenza:Scenarios for the US,UK and the Netherlands 2007(14)

本文链接:http://d.g.wanfangdata.com.cn/Periodical_xtgcllysj201109015.aspx


相关文章

  • 传播效果理论五大阶段研究综述
  • 龙源期刊网 http://www.qikan.com.cn 传播效果理论五大阶段研究综述 作者:于淼 来源:<中国学术研究>2013年第11期 摘 要:传播学自产生至今,传播效果是传播学理论研究中的一个重要范畴,许多传播学理论都 ...查看


  • 复杂网络上流行病传播的研究
  • WUHAN TEXTILE UNIVERSITY 2013届本科毕业论文(设计) 题 目:复杂网络上流行病传播的研究 院 系:数学与计算机学院 专 业:信息与计算科学 姓 名:陆乔时 学 号:0909281023 指导老师:赵军产 2013 ...查看


  • 货币危机理论文献综述 1
  • 货币危机理论文献综述 (2009级金融研究生 严武军 2009210053) 一.第一代货币危机模型 第一代货币危机模型的产生源于墨西哥(1973-1982)和阿根廷(1978-1981)等国家所发生的货币危机.第一代货币危机模型强调外汇市 ...查看


  • 室内定位技术及应用综述_赵锐
  • 专题综述 2014年第27卷第3期 Electronic Sci. &Tech. /Mar.15,2014 室内定位技术及应用综述 赵 摘 要 1 锐,钟 22 榜,朱祖礼,马 22乐,姚金飞 (1. 军事交通学院基础部,天津300 ...查看


  • 人口增长模型综述
  • 人口增长模型综述 一.引言 当前中国的人口正在以一个较快的速度增长,随着人口的增长,环境和社会的压力正在不断的加大,然而,环境的承载能力是有限的,人口不可能无限制的,故人口最后会趋于一个稳定的数字.世界上大多数国家的人口年龄结构,都是随着人 ...查看


  • 小世界网络综述
  • 关于小世界网络的文献综述 一.小世界网络概念方面的研究 Watts和Strogatz开创性的提出了小世界网络并给出了WS小世界网络模型.小世界网络的主要特征就是具有比较小的平均路径长度和比较大的聚类系数.所谓网络的平均路径长度,是指网络中两 ...查看


  • 传染病预测预警方法在我国的应用现状
  • 308 CHINA TROPICAL M EDICINE Vol.10No.3M arch 2010中国热带医学2010年第10卷第3期 [疾病监控] 传染病预测预警方法在我国的应用现状 Current status of applicat ...查看


  • 埃博拉病毒传播模型及规律预测
  • 摘要:埃博拉病毒是一种能引起人类和灵长类动物产生埃博拉出血热的烈性传染病病毒.文章以2014年西非疫区为参照,建立虚拟环境的常微分方程组,利用四阶龙格―库塔法求解其数值解,具体通过C语言程序设计实现,并据此研究埃博拉病毒的传播规律,分析隔离 ...查看


  • SPNR:社交网络中的新型谣言传播模型
  • doi:10.3969/j.issn.1671-1122.2014.01.002 SPNR:社交网络中的新型谣言传播模型 薛一波1, 2,鲍媛媛1, 2,易成岐3 (1.清华大学信息技术研究院,北京 100084:2. 清华大学信息科学技术 ...查看


热门内容