1000-6788(2011)09-1736-09
N949;R131
A
传染病传播模型综述
张发1,2李璐2
宣慧玉21.空军工程大学工程学院,西安710038;2.西安交通大学管理学院,西安710049
建立传染病传播模型是理解传染病流行机理,预测流行趋势,进行防控决策的基础.将传染病传播模型分为单一群体模型,复合群体模型和微观个体模型三类.单一群体模型从宏观角度刻画了集计量的变化,以经典的SIR为基础,在仓室设置、年龄结构、随机性、异质性等方面进行了扩展.复合群体模型将人群划分为多个子群体,子群体之间因人口流动而耦合,适合研究具有空间异质性的跨地区传播问题.微观个体模型的出发点是个体状态和行为,所有个体形成接触网络.这类模型有理想网络和现实网络两个研究方向,理想网络关注接触网络特性对传染病传播动力学的影响,现实网络致力于揭示社会接触的实际特征,构建足够真实的模拟网络,研究传染病的传播.这三类模型各有特点,分别具有各自的适用领域,应根据研究目的和问题特点选择合适的建模方法.
传染病模型;仓室;复合群体;接触网络;综述
Survey of transmission models of infectious diseases
ZHANG Fa
LI LuXUAN Hui-yu
2010-01-14
国家自然科学基金(70971106);中国博士后科学基金(20070421118)
作者简介:张发(1970-),男,副教授,博士后,研究方向复杂系统仿真,E-mail: richter2000@163.com;李璐(1977-),男,博士后,研究方向管理系统仿真,E-mail: lu.lee05@gmail.com;宣慧玉(1942-),女,教授,博士生导师,研究方向系统仿真,E-mail:xuanhy@mail.xjtu.edu.cn.
1737
1738
1739
1740
1741
@@[1] Grassly N C, Fraser C. Mathematical models of infectious disease transmission[J]. Nature Reviews Microbiology,
2008, 6(6): 477-487.
@@[2] Keeling M J, Rohani P. Modeling Infectious Diseases in Humans and Animals[M]. New Jersey: Princeton Uni
versity Press, 2007.
@@[3] Anderson R M, May R M. Infectious Diseases of Humans, Dynamics and Control[M]. New York: Oxford Uni versity Press, 1992.
@@[4] Riley S. Large-scale spatial-transmission models of infectious disease[J]. Science, 2007, 316(June 1): 1298-1301.
@@[5] Koopman J. Modeling infection transmission[J]. Annual Review on Public Health, 2004, 25: 303-326.@@[6] Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics, part I[J]. Proceedings
of the Royal Society of London A, 1927, 115: 700-721.
@@[7] Castillo-Chavez C, Castillo-Garsow C W, Yakubu A A. Mathematic models of isolation and quarantine[J]. Journal
of the American Medical Association, 2003, 290(21): 2876-2877.
@@[8]蔡全才,等.定量评价SARS干预措施效果的传播动力学模型[J].中华流行病学杂志,2005,26(3):153-158.
Cai Q C, et al. To develop a model on severe acute respiratory syndrome epidemics to quantitatively evaluate
the effectiveness of intervention measure[J]. Chinese Journal of Epidemiology, 2005, 26(3): 153-158. @@[9] Riley S, Fraser C, Donnelly C A, et al. SARS in Hong Kong: Impact of public health transmission dynamics of
the etiological agent of interventions[J]. Science, 2003, 300(June 20): 1961-1966.
@@[10] Nu(n)o M, Chowell G, Gumel A B. Assessing the role of basic control measures, antivirals and vaccine in curtailing
pandemic influenza: Scenarios for the US, UK and the Netherlands[J]. Journal of the Royal Society Interface,
2007, 4(14): 502-521.@@[11] Fraser C, Donnelly C A, Cauchemez S, et al. Pandemic potential of a strain of influenza A(H1N1): Early findings[J]. Science, 2009, 324(5934): 1557-1561.@@[12] Hoppensteadt F. Mathematical Theories of Populations: Demographics, Genetics and Epidemics[M]. Philadel phia: SIAM, 1975.
@@[13] Rouderfer V, Becker N. Assessment of two-dose vaccination schedules: Availability or vaccination and catch-up[J].
Mathematical Biosciences, 1995, 129(1): 41-66.@@[14] McKendrick A G. Applications of mathematics to medical problems[J]. Proceedings of the Edinburgh Mathe matical Society, 1926, 44: 98-130.@@[15] Isham V. Stochastic Models for Epidemics[M]//Davison A C, Dodge Y, Wermuth N. Celebrating Statistics: Papers in Honor of Sir David Cox on his 80th Birthday. Oxford: Oxford University Press, 2005: 171-177.@@[16] Nasell Ⅰ. Stochastic models of some endemic infections[J]. Mathematical Biosciences, 2002, 179(1): 1-19.
@@[17] Lajmanovich A, Yorke J A. A deterministic model for gonorrhea in a nonhomogeneous population[J]. Mathe matical Biosciences, 1976, 28(3/4): 221-236.@@[18] Gonzalez M C, Hidalgo C A, Barabási A L. Understanding individual human mobility patterns[J]. Nature, 2008,
453(7196): 779-782.@@[19] Grenfell B, Harwood J. (Meta)population dynamics of infectious disease[J]. Tree, 1997, 12(10): 395-399.@@[20] Hanski I. Metapopulation theory, its use and misuse[J]. Basic and Applied Ecology, 2004, 5(3): 225-229.@@[21] Wang W, Mulone G. Threshold of disease transmission in a patch environment[J]. Journal of Mathematical Analysis and Applications, 2003, 285(1): 321-335.
@@[22] Castillo-Chavez C, Yakubu A A. Dispersal, disease and life-history evolution[J]. Mathematical Biosciences, 2001,
173(1): 35-53.
@@[23] Cross P C, Johnson P L F, Lloyd-Smith J O, et al. Utility of R-0 as a predictor of disease invasion in structured
populations[J]. Journal of the Royal Society Interface, 2007, 4(13): 315-324.
@@[24] Colizza V, Vespignani A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern:
Theory and simulations[J]. Journal of Theoretical Biology, 2008, 251(3): 450-467.
@@[25] Watts D J, Muhamad R, Medina D C, et al. Multiscale, resurgent epidemics in a hierarchical metapopulation model[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(32):
11157-11162.
@@[26] Colizza V, Barrat A, Barthélemy M, et al. The role of the airline transportation network in the prediction and
predictability of global epidemics[J]. Proceedings of the National Academy of Sciences of the United States of
America, 2006, 103(7): 2015-2020.
@@[27] Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in a globalized world[J]. Proceedings of
the National Academy of Sciences of the USA, 2004, 101(42): 15124-15129.
@@[28] Wallinga J, Edmunds W J, Kretzschmar M. Perspective: Human contact patterns and the spread of airborne infectious diseases[J]. Trends in Microbiology, 1999, 7(9): 372-377.
@@[29] Liljeros F, Edling C R, Amaral L A N. Sexual networks: Implications for the transmission of sexually transmitted
infections[J]. Microbes and Infection, 2003, 5(2): 189-196.
@@[30] Keeling M J. The implications of network structure for epidemic dynamics[J]. Theoretical Population Biology,
2005, 67(1): 1-8.
@@[31] Keeling M J, Eames K T D. Networks and epidemic models[J]. Journal of the Royal Society Interface, 2005, 2(4):
295-307.
@@[32] Lloyd A L, May R M. Epidemiology: How viruses spread among computers and people[J]. Science, 2001, 292(5520): 1316-1317.@@[33] Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics[J]. Physics Reports, 2006,
424(4-5): 175-308.
@@[34] Kleczkowski A, Grenfell B T. Mean-field-type equations for spread of epidemics: The ‘small world' model[J].
Physica A: Statistical Mechanics and Its Applications, 1999, 274(1/2): 355-360.
@@[35] Moore C, Newman M E J. Epidemics and percolation in small-world networks[J]. Physical Review E, 2000, 61(5):
5678-5682.
@@[36] Barabási A L. Scale-free networks: A decade and beyond[J]. Science, 2009, 325(5939): 412-413.
@@[37] Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001,
86(14): 3200-3203.
@@[38] Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks[J]. Physical Review
E, 2001, 63(6): 066117.
@@[39] Hwang D U, Boccaletti S, Moreno Y, et al. Thresholds for epidemic outbreaks in finite scale-free networks[J].
Mathematical Biosciences and Engineering, 2005, 2(2): 317-327.
@@[40] Pastor-Satorras R, Vespignani A. Epidemic dynamics in finite size scale-free networks[J]. Physical Review E,
2002, 65(3): 035108.@@[41] Klemm K, Eguíluz V M. Highly clustered scale-free networks[J]. Physical Review E, 2002, 65(3): 036123.@@[42] Klemm K, Eguíluz V M. Growing scale-free networks with small-world behavior[J]. Physical Review E, 2002,
65(5): 057102.@@[43] Newman M E J. Spread of epidemic disease on networks[J]. Physical Review E, 2002, 66(1): 016128.@@[44] Kuperman M, Abramson G. Small world effect in an epidemiological model[J]. Physical Review Letters, 2001,
86(13): 2909.
@@[45] May R M, Lloyd A L. Infection dynamics on scale-free networks[J]. Physical Review E, 2001, 64(6): 066112.@@[46] Newman M E J, Park J. Why social networks are different from other types of networks[J]. Physical Review E,
2003, 68(3): 036122.
@@[47] Moreno Y, Gómez J B, Pacheco A F. Epidemic incidence in correlated complex networks[J]. Physical Review E,
2003, 68(3): 035103.
@@[48] Meyers L A, Newman M E J, Pourbohloul B. Predicting epidemics on directed contact networks[J]. Journal of
Theoretical Biology, 2006, 240(3): 400-418.
@@[49] Ball F, Neal P. Network epidemic models with two levels of mixing[J]. Mathematical Biosciences, 2008, 212(1):
69-87.
@@[50] Toroczkai Z, Guclu H. Proximity networks and epidemics[J]. Physica A, 2007, 378(1): 68-75.
@@[51] Callaway D S, Newman M E J, Strogatz S H, et al. Network robustness and fragility: Percolation on random
graphs[J]. Physical Review Letters, 2000, 85(25): 5468.
@@[52] Pastor-Satorras R, Vespignani A. Immunization of complex networks[J]. Physical Review E, 2002, 65(3): 036104.@@[53] Cohen R, Havlin S, Ben-Avraham D. Efficient immunization of populations and computers[J]. Physical Review
Letters, 2003, 91(24): 247901.
@@[54] Hayashi Y, Minoura M, Matsukubo J. Oscillatory epidemic prevalence in growing scale-free networks[J]. Physical
Review E, 2004, 69(1): 016112.
@@[55] Xu Z, Sui D Z. Effect of small-world networks on epidemic propagation and intervention[J]. Geographical Analysis,
2009, 41(3): 263-282.
@@[56] Vannucchi F S, Boccaletti S. Chaotic spreading of epidemics in complex networks of excitable units[J]. Mathe
matical Biosciences and Engineering, 2004, 1(1): 49-55.
@@[57] Albert R, Jeong H, Barabási A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(6794):
378-382.
@@[58] Eames K T D, Keeling M J. Contact tracing and disease control[J]. Proceedings of the Royal Society B: Biological
Sciences, 2003, 270(1533): 2565-2571.
@@[59] Kiss I Z, Green D M, Kao R R. Disease contact tracing in random and clustered networks[J]. Proceedings of the
Royal Society B: Biological Sciences, 2005, 272(1570): 1407-1414.
@@[60] Tsimring L S, Huerta R. Modeling of contact tracing in social networks[J]. Physica A, 2003, 325(1-2): 33-39.@@[61] Kiss I Z, Green D M, Kao R R. Infectious disease control using contact tracing in random and scale-free net
works[J]. Journal of the Royal Society Interface, 2006, 3(6): 55-62.
@@[62] Kiss I Z, Green D M, Kao R R. The effect of network mixing patterns on epidemic dynamics and the efficacy of
disease contact tracing[J]. J R Soc Interface, 2008, 5: 791-799.@@[63] Read J M, Eames K T D, Edmunds W J. Dynamic social networks and the implications for the spread of infectious disease[J]. Journal of the Royal Society Interface, 2008, 5(26): 1001-1007.
@@[64] Fu Y C. Measuring personal networks with daily contacts: A single-item survey question and the contact diary[J].
Social Networks, 2005, 27(3): 169-186.
@@[65] Valle S Y D, Hyman J M, Hethcote H W, et al. Mixing patterns between age groups in social networks[J]. Social
Networks, 2007, 29(4): 539-554.
@@[66] Mossong J, Hens N, Jit M, et al. Social contacts and mixing patterns relevant to the spread of infectious
diseases[J]. PLoS Medicine, 2008, 5(3): e74.
@@[67] Halloran M E, Longini I M, Nizam A, et al. Containing bioterrorist smallpox[J]. Science, 2002, 298(5597):
128-132.
@@[68] Milne G J, Kelso J K, Kelly H A, et al. A small community model for the transmission of infectious diseases: Comparison of school closure as an intervention in individual-based models of an influenza pandemic[J]. PLoS
ONE, 2008, 3(12): e4005.
@@[69] Eubank S, Guclu H, Kumar V S A, et al. Modelling disease outbreaks in realistic urban social networks[J].
Nature, 2004, 429(6988): 180-184.
@@[70] Germann T C, Kadau K, Longini I M, et al. Mitigation strategies for pandemic influenza in the United States[J].
Proceeings of the National Academy of Sciences of the United States of America, 2006, 103(15): 5935-5940.@@[71] Ferguson N M, Cummings D A T, Cauchemez S, et al. Strategies for containing an emerging influenza pandemic
in Southeast Asia[J]. Nature, 2005, 437(7056): 209-214.
@@[72] Longini I M, Nizam A, Xu S F, et al. Containing pandemic influenza at the source[J]. Science, 2005, 309(5737):
1083-1087.
传染病传播模型综述
作者:作者单位:刊名:英文刊名:年,卷(期):
张发, 李璐, 宣慧玉, ZHANG Fa, LI Lu, XUAN Hui-yu
张发,ZHANG Fa(空军工程大学工程学院,西安710038;西安交通大学管理学院,西安710049), 李璐,宣慧玉,LILu,XUAN Hui-yu(西安交通大学管理学院,西安,710049)系统工程理论与实践
Systems Engineering —Theory & Practice2011,31(9)
1.Germann T C;Kadau K;Longini I M Mitigation strategies for pandemic influenza in the United States[外文期刊] 2006(15)2.Castillo-Chavez C;Castillo-Garsow C W;Yakubu A A Mathematic models of isolation and quarantine[外文期刊] 2003(21)3.Eubank S;Guclu H;Kumar V S A Modelling disease outbreaks in realistic urban social networks[外文期刊] 2004(6988)4.Milne G J;Kelso J K;Kelly H A A small community model for the transmission of infectious diseases:Comparison of schoolclosure as an intervention in individual-based models of an influenza pandemic 2008(12)5.蔡全才 定量评价SARS干预措施效果的传播动力学模型[期刊论文]-中华流行病学杂志 2005(03)
6.Longini I M;Nizam A;Xu S F Containing pandemic influenza at the source[外文期刊] 2005(5737)
7.Ferguson N M;Cummings D A T;Cauchemez S Strategies for containing an emerging influenza pandemic in Southeast Asia[外文期刊] 2005(7056)
8.Klemm K;Eguíluz V M Highly clustered scale-free networks 2002(03)
9.Pastor-Satorras R;Vespignani A Epidemic dynamics in finite size scale-free networks 2002(03)10.Kiss I Z;Green D M;Kao R R Disease contact tracing in random and clustered networks 2005(1570)11.Eames K T D;Keeling M J Contact tracing and disease control[外文期刊] 2003(1533)
12.Albert R;Jeong H;Barabási A L Error and attack tolerance of complex networks[外文期刊] 2000(6794)13.Vannucchi F S;Boccaletti S Chaotic spreading of epidemics in complex networks of excitable units 2004(01)14.Xu Z;Sui D Z Effect of small-world networks on epidemic propagation and intervention 2009(03)
15.Hayashi Y;Minoura M;Matsukubo J Oscillatory epidemic prevalence in growing scale-free networks[外文期刊] 2004(01)16.Riley S;Fraser C;Donnelly C A SARS in Hong Kong:Impact of public health transmission dynamics of the etiological agent ofinterventions 2003(20)
17.May R M;Lloyd A L Infection dynamics on scale-free networks[外文期刊] 2001(06)
18.Kuperman M;Abramson G Small world effect in an epidemiological model[外文期刊] 2001(13)19.Newman M E J Spread of epidemic disease on networks 2002(01)
20.Klemm K;Eguíluz V M Growing scale-free networks with small-world behavior 2002(05)21.Nasell Ⅰ Stochastic models of some endemic infections[外文期刊] 2002(01)
22.Lloyd A L;May R M Epidemiology:How viruses spread among computers and people[外文期刊] 2001(5520)23.Keeling M J;Eames K T D Networks and epidemic models 2005(04)
24.Halloran M E;Longini I M;Nizam A Containing bioterrorist smallpox[外文期刊] 2002(5597)
25.Mossong J;Hens N;Jit M Social contacts and mixing patterns relevant to the spread of infectious diseases 2008(03)26.Valle S Y D;Hyman J M;Hethcote H W Mixing patterns between age groups in social networks 2007(04)
27.Fu Y C Measuring personal networks with daily contacts:A single-item survey question and the contact diary 2005(03)28.Read J M;Eames K T D;Edmunds W J Dynamic social networks and the implications for the spread of infectious disease[外文期刊] 2008(26)
29.Kiss I Z;Green D M;Kao R R The effect of network mixing patterns on epidemic dynamics and the efficacy of disease contacttracing 2008
30.Kiss I Z;Green D M;Kao R R Infectious disease control using contact tracing in random and scale-free networks[外文期刊]2006(06)
31.Tsimring L S;Huerta R Modeling of contact tracing in social networks 2003(1-2)
32.Kermack W O;McKendrick A G Contributions to the mathematical theory of epidemics,part I[外文期刊] 192733.Keeling M J The implications of network structure for epidemic dynamics[外文期刊] 2005(01)
35.Liljeros F;Edling C R;Amaral L A N Sexual networks:Implications for the transmission of sexually transmitted infections2003(02)
36.Wallinga J;Edmunds W J;Kretzschmar M Perspective:Human contact patterns and the spread of airborne infectious diseases[外文期刊] 1999(09)
37.Castillo-Chavez C;Yakubu A A Dispersal,disease and life-history evolution[外文期刊] 2001(01)
38.Wang W;Mulone G Threshold of disease transmission in a patch environment[外文期刊] 2003(01)
39.Cohen R;Havlin S;Ben-Avraham D Efficient immunization of populations and computers 2003(24)
40.Pastor-Satorras R;Vespignani A Immunization of complex networks 2002(03)
41.Callaway D S;Newman M E J;Strogatz S H Network robustness and fragility:Percolation on random graphs[外文期刊] 2000(25)
42.Toroczkai Z;Guclu H Proximity networks and epidemics[外文期刊] 2007(01)
43.Koopman J Modeling infection transmission 2004
44.Ball F;Neal P Network epidemic models with two levels of mixing[外文期刊] 2008(01)
45.Meyers L A;Newman M E J;Pourbohloul B Predicting epidemics on directed contact networks[外文期刊] 2006(03)
46.Moreno Y;Gómez J B;Pacheco A F Epidemic incidence in correlated complex networks[外文期刊] 2003(03)
47.Newman M E J;Park J Why social networks are different from other types of networks[外文期刊] 2003(03)
48.Hanski I Metapopulation theory,its use and misuse 2004(03)
49.Keeling M J;Rohani P Modeling Infectious Diseases in Humans and Animals 2007
50.Grenfell B;Harwood J (Meta)population dynamics of infectious disease 1997(10)
51.Gonzalez M C;Hidalgo C A;Barabási A L Understanding individual human mobility patterns[外文期刊] 2008(7196)
52.Lajmanovich A;Yorke J A A deterministic model for gonorrhea in a nonhomogeneous population 1976(3/4)
53.Riley S Large-scale spatial-transmission models of infectious disease[外文期刊] 2007(1)
54.Hwang D U;Boccaletti S;Moreno Y Thresholds for epidemic outbreaks in finite scale-free networks 2005(02)
55.Pastor-Satorras R;Vespignani A Epidemic dynamics and endemic states in complex networks[外文期刊] 2001(06)
56.Pastor-Satorras R;Vespignani A Epidemic spreading in scale-free networks[外文期刊] 2001(14)
57.Barabási A L Scale-free networks:A decade and beyond[外文期刊] 2009(5939)
58.Moore C;Newman M E J Epidemics and percolation in small-world networks 2000(05)
59.Kleczkowski A;Grenfell B T Mean-field-type equations for spread of epidemics:The 'small world' model 1999(1/2)
60.Boccaletti S;Latora V;Moreno Y Complex networks:Structure and dynamics[外文期刊] 2006(4-5)
61.Hufnagel L;Brockmann D;Geisel T Forecast and control of epidemics in a globalized world[外文期刊] 2004(42)
62.Colizza V;Barrat A;Barthélemy M The role of the airline transportation network in the prediction and predictability ofglobal epidemics[外文期刊] 2006(07)
63.Watts D J;Muhamad R;Medina D C Multiscale,resurgent epidemics in a hierarchical metapopulation model 2005(32)
64.Colizza V;Vespignani A Epidemic modeling in metapopulation systems with heterogeneous coupling pattern:Theory andsimulations[外文期刊] 2008(03)
65.Cross P C;Johnson P L F;Lloyd-Smith J O Utility of R-0 as a predictor of disease invasion in structured populations2007(13)
66.Isham V Stochastic Models for Epidemics 2005
67.McKendrick A G Applications of mathematics to medical problems 1926
68.Rouderfer V;Becker N Assessment of two-dose vaccination schedules:Availability or vaccination and catch-up[外文期刊]1995(01)
69.Hoppensteadt F Mathematical Theories of Populations:Demographics,Genetics and Epidemics 1975
70.Fraser C;Donnelly C A;Cauchemez S Pandemic potential of a strain of influenza A(H1N1):Early findings[外文期刊] 2009(5934)
71.Nu(n)o M;Chowell G;Gumel A B Assessing the role of basic control measures,antivirals and vaccine in curtailing pandemicinfluenza:Scenarios for the US,UK and the Netherlands 2007(14)
本文链接:http://d.g.wanfangdata.com.cn/Periodical_xtgcllysj201109015.aspx
1000-6788(2011)09-1736-09
N949;R131
A
传染病传播模型综述
张发1,2李璐2
宣慧玉21.空军工程大学工程学院,西安710038;2.西安交通大学管理学院,西安710049
建立传染病传播模型是理解传染病流行机理,预测流行趋势,进行防控决策的基础.将传染病传播模型分为单一群体模型,复合群体模型和微观个体模型三类.单一群体模型从宏观角度刻画了集计量的变化,以经典的SIR为基础,在仓室设置、年龄结构、随机性、异质性等方面进行了扩展.复合群体模型将人群划分为多个子群体,子群体之间因人口流动而耦合,适合研究具有空间异质性的跨地区传播问题.微观个体模型的出发点是个体状态和行为,所有个体形成接触网络.这类模型有理想网络和现实网络两个研究方向,理想网络关注接触网络特性对传染病传播动力学的影响,现实网络致力于揭示社会接触的实际特征,构建足够真实的模拟网络,研究传染病的传播.这三类模型各有特点,分别具有各自的适用领域,应根据研究目的和问题特点选择合适的建模方法.
传染病模型;仓室;复合群体;接触网络;综述
Survey of transmission models of infectious diseases
ZHANG Fa
LI LuXUAN Hui-yu
2010-01-14
国家自然科学基金(70971106);中国博士后科学基金(20070421118)
作者简介:张发(1970-),男,副教授,博士后,研究方向复杂系统仿真,E-mail: richter2000@163.com;李璐(1977-),男,博士后,研究方向管理系统仿真,E-mail: lu.lee05@gmail.com;宣慧玉(1942-),女,教授,博士生导师,研究方向系统仿真,E-mail:xuanhy@mail.xjtu.edu.cn.
1737
1738
1739
1740
1741
@@[1] Grassly N C, Fraser C. Mathematical models of infectious disease transmission[J]. Nature Reviews Microbiology,
2008, 6(6): 477-487.
@@[2] Keeling M J, Rohani P. Modeling Infectious Diseases in Humans and Animals[M]. New Jersey: Princeton Uni
versity Press, 2007.
@@[3] Anderson R M, May R M. Infectious Diseases of Humans, Dynamics and Control[M]. New York: Oxford Uni versity Press, 1992.
@@[4] Riley S. Large-scale spatial-transmission models of infectious disease[J]. Science, 2007, 316(June 1): 1298-1301.
@@[5] Koopman J. Modeling infection transmission[J]. Annual Review on Public Health, 2004, 25: 303-326.@@[6] Kermack W O, McKendrick A G. Contributions to the mathematical theory of epidemics, part I[J]. Proceedings
of the Royal Society of London A, 1927, 115: 700-721.
@@[7] Castillo-Chavez C, Castillo-Garsow C W, Yakubu A A. Mathematic models of isolation and quarantine[J]. Journal
of the American Medical Association, 2003, 290(21): 2876-2877.
@@[8]蔡全才,等.定量评价SARS干预措施效果的传播动力学模型[J].中华流行病学杂志,2005,26(3):153-158.
Cai Q C, et al. To develop a model on severe acute respiratory syndrome epidemics to quantitatively evaluate
the effectiveness of intervention measure[J]. Chinese Journal of Epidemiology, 2005, 26(3): 153-158. @@[9] Riley S, Fraser C, Donnelly C A, et al. SARS in Hong Kong: Impact of public health transmission dynamics of
the etiological agent of interventions[J]. Science, 2003, 300(June 20): 1961-1966.
@@[10] Nu(n)o M, Chowell G, Gumel A B. Assessing the role of basic control measures, antivirals and vaccine in curtailing
pandemic influenza: Scenarios for the US, UK and the Netherlands[J]. Journal of the Royal Society Interface,
2007, 4(14): 502-521.@@[11] Fraser C, Donnelly C A, Cauchemez S, et al. Pandemic potential of a strain of influenza A(H1N1): Early findings[J]. Science, 2009, 324(5934): 1557-1561.@@[12] Hoppensteadt F. Mathematical Theories of Populations: Demographics, Genetics and Epidemics[M]. Philadel phia: SIAM, 1975.
@@[13] Rouderfer V, Becker N. Assessment of two-dose vaccination schedules: Availability or vaccination and catch-up[J].
Mathematical Biosciences, 1995, 129(1): 41-66.@@[14] McKendrick A G. Applications of mathematics to medical problems[J]. Proceedings of the Edinburgh Mathe matical Society, 1926, 44: 98-130.@@[15] Isham V. Stochastic Models for Epidemics[M]//Davison A C, Dodge Y, Wermuth N. Celebrating Statistics: Papers in Honor of Sir David Cox on his 80th Birthday. Oxford: Oxford University Press, 2005: 171-177.@@[16] Nasell Ⅰ. Stochastic models of some endemic infections[J]. Mathematical Biosciences, 2002, 179(1): 1-19.
@@[17] Lajmanovich A, Yorke J A. A deterministic model for gonorrhea in a nonhomogeneous population[J]. Mathe matical Biosciences, 1976, 28(3/4): 221-236.@@[18] Gonzalez M C, Hidalgo C A, Barabási A L. Understanding individual human mobility patterns[J]. Nature, 2008,
453(7196): 779-782.@@[19] Grenfell B, Harwood J. (Meta)population dynamics of infectious disease[J]. Tree, 1997, 12(10): 395-399.@@[20] Hanski I. Metapopulation theory, its use and misuse[J]. Basic and Applied Ecology, 2004, 5(3): 225-229.@@[21] Wang W, Mulone G. Threshold of disease transmission in a patch environment[J]. Journal of Mathematical Analysis and Applications, 2003, 285(1): 321-335.
@@[22] Castillo-Chavez C, Yakubu A A. Dispersal, disease and life-history evolution[J]. Mathematical Biosciences, 2001,
173(1): 35-53.
@@[23] Cross P C, Johnson P L F, Lloyd-Smith J O, et al. Utility of R-0 as a predictor of disease invasion in structured
populations[J]. Journal of the Royal Society Interface, 2007, 4(13): 315-324.
@@[24] Colizza V, Vespignani A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern:
Theory and simulations[J]. Journal of Theoretical Biology, 2008, 251(3): 450-467.
@@[25] Watts D J, Muhamad R, Medina D C, et al. Multiscale, resurgent epidemics in a hierarchical metapopulation model[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(32):
11157-11162.
@@[26] Colizza V, Barrat A, Barthélemy M, et al. The role of the airline transportation network in the prediction and
predictability of global epidemics[J]. Proceedings of the National Academy of Sciences of the United States of
America, 2006, 103(7): 2015-2020.
@@[27] Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in a globalized world[J]. Proceedings of
the National Academy of Sciences of the USA, 2004, 101(42): 15124-15129.
@@[28] Wallinga J, Edmunds W J, Kretzschmar M. Perspective: Human contact patterns and the spread of airborne infectious diseases[J]. Trends in Microbiology, 1999, 7(9): 372-377.
@@[29] Liljeros F, Edling C R, Amaral L A N. Sexual networks: Implications for the transmission of sexually transmitted
infections[J]. Microbes and Infection, 2003, 5(2): 189-196.
@@[30] Keeling M J. The implications of network structure for epidemic dynamics[J]. Theoretical Population Biology,
2005, 67(1): 1-8.
@@[31] Keeling M J, Eames K T D. Networks and epidemic models[J]. Journal of the Royal Society Interface, 2005, 2(4):
295-307.
@@[32] Lloyd A L, May R M. Epidemiology: How viruses spread among computers and people[J]. Science, 2001, 292(5520): 1316-1317.@@[33] Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics[J]. Physics Reports, 2006,
424(4-5): 175-308.
@@[34] Kleczkowski A, Grenfell B T. Mean-field-type equations for spread of epidemics: The ‘small world' model[J].
Physica A: Statistical Mechanics and Its Applications, 1999, 274(1/2): 355-360.
@@[35] Moore C, Newman M E J. Epidemics and percolation in small-world networks[J]. Physical Review E, 2000, 61(5):
5678-5682.
@@[36] Barabási A L. Scale-free networks: A decade and beyond[J]. Science, 2009, 325(5939): 412-413.
@@[37] Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001,
86(14): 3200-3203.
@@[38] Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks[J]. Physical Review
E, 2001, 63(6): 066117.
@@[39] Hwang D U, Boccaletti S, Moreno Y, et al. Thresholds for epidemic outbreaks in finite scale-free networks[J].
Mathematical Biosciences and Engineering, 2005, 2(2): 317-327.
@@[40] Pastor-Satorras R, Vespignani A. Epidemic dynamics in finite size scale-free networks[J]. Physical Review E,
2002, 65(3): 035108.@@[41] Klemm K, Eguíluz V M. Highly clustered scale-free networks[J]. Physical Review E, 2002, 65(3): 036123.@@[42] Klemm K, Eguíluz V M. Growing scale-free networks with small-world behavior[J]. Physical Review E, 2002,
65(5): 057102.@@[43] Newman M E J. Spread of epidemic disease on networks[J]. Physical Review E, 2002, 66(1): 016128.@@[44] Kuperman M, Abramson G. Small world effect in an epidemiological model[J]. Physical Review Letters, 2001,
86(13): 2909.
@@[45] May R M, Lloyd A L. Infection dynamics on scale-free networks[J]. Physical Review E, 2001, 64(6): 066112.@@[46] Newman M E J, Park J. Why social networks are different from other types of networks[J]. Physical Review E,
2003, 68(3): 036122.
@@[47] Moreno Y, Gómez J B, Pacheco A F. Epidemic incidence in correlated complex networks[J]. Physical Review E,
2003, 68(3): 035103.
@@[48] Meyers L A, Newman M E J, Pourbohloul B. Predicting epidemics on directed contact networks[J]. Journal of
Theoretical Biology, 2006, 240(3): 400-418.
@@[49] Ball F, Neal P. Network epidemic models with two levels of mixing[J]. Mathematical Biosciences, 2008, 212(1):
69-87.
@@[50] Toroczkai Z, Guclu H. Proximity networks and epidemics[J]. Physica A, 2007, 378(1): 68-75.
@@[51] Callaway D S, Newman M E J, Strogatz S H, et al. Network robustness and fragility: Percolation on random
graphs[J]. Physical Review Letters, 2000, 85(25): 5468.
@@[52] Pastor-Satorras R, Vespignani A. Immunization of complex networks[J]. Physical Review E, 2002, 65(3): 036104.@@[53] Cohen R, Havlin S, Ben-Avraham D. Efficient immunization of populations and computers[J]. Physical Review
Letters, 2003, 91(24): 247901.
@@[54] Hayashi Y, Minoura M, Matsukubo J. Oscillatory epidemic prevalence in growing scale-free networks[J]. Physical
Review E, 2004, 69(1): 016112.
@@[55] Xu Z, Sui D Z. Effect of small-world networks on epidemic propagation and intervention[J]. Geographical Analysis,
2009, 41(3): 263-282.
@@[56] Vannucchi F S, Boccaletti S. Chaotic spreading of epidemics in complex networks of excitable units[J]. Mathe
matical Biosciences and Engineering, 2004, 1(1): 49-55.
@@[57] Albert R, Jeong H, Barabási A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(6794):
378-382.
@@[58] Eames K T D, Keeling M J. Contact tracing and disease control[J]. Proceedings of the Royal Society B: Biological
Sciences, 2003, 270(1533): 2565-2571.
@@[59] Kiss I Z, Green D M, Kao R R. Disease contact tracing in random and clustered networks[J]. Proceedings of the
Royal Society B: Biological Sciences, 2005, 272(1570): 1407-1414.
@@[60] Tsimring L S, Huerta R. Modeling of contact tracing in social networks[J]. Physica A, 2003, 325(1-2): 33-39.@@[61] Kiss I Z, Green D M, Kao R R. Infectious disease control using contact tracing in random and scale-free net
works[J]. Journal of the Royal Society Interface, 2006, 3(6): 55-62.
@@[62] Kiss I Z, Green D M, Kao R R. The effect of network mixing patterns on epidemic dynamics and the efficacy of
disease contact tracing[J]. J R Soc Interface, 2008, 5: 791-799.@@[63] Read J M, Eames K T D, Edmunds W J. Dynamic social networks and the implications for the spread of infectious disease[J]. Journal of the Royal Society Interface, 2008, 5(26): 1001-1007.
@@[64] Fu Y C. Measuring personal networks with daily contacts: A single-item survey question and the contact diary[J].
Social Networks, 2005, 27(3): 169-186.
@@[65] Valle S Y D, Hyman J M, Hethcote H W, et al. Mixing patterns between age groups in social networks[J]. Social
Networks, 2007, 29(4): 539-554.
@@[66] Mossong J, Hens N, Jit M, et al. Social contacts and mixing patterns relevant to the spread of infectious
diseases[J]. PLoS Medicine, 2008, 5(3): e74.
@@[67] Halloran M E, Longini I M, Nizam A, et al. Containing bioterrorist smallpox[J]. Science, 2002, 298(5597):
128-132.
@@[68] Milne G J, Kelso J K, Kelly H A, et al. A small community model for the transmission of infectious diseases: Comparison of school closure as an intervention in individual-based models of an influenza pandemic[J]. PLoS
ONE, 2008, 3(12): e4005.
@@[69] Eubank S, Guclu H, Kumar V S A, et al. Modelling disease outbreaks in realistic urban social networks[J].
Nature, 2004, 429(6988): 180-184.
@@[70] Germann T C, Kadau K, Longini I M, et al. Mitigation strategies for pandemic influenza in the United States[J].
Proceeings of the National Academy of Sciences of the United States of America, 2006, 103(15): 5935-5940.@@[71] Ferguson N M, Cummings D A T, Cauchemez S, et al. Strategies for containing an emerging influenza pandemic
in Southeast Asia[J]. Nature, 2005, 437(7056): 209-214.
@@[72] Longini I M, Nizam A, Xu S F, et al. Containing pandemic influenza at the source[J]. Science, 2005, 309(5737):
1083-1087.
传染病传播模型综述
作者:作者单位:刊名:英文刊名:年,卷(期):
张发, 李璐, 宣慧玉, ZHANG Fa, LI Lu, XUAN Hui-yu
张发,ZHANG Fa(空军工程大学工程学院,西安710038;西安交通大学管理学院,西安710049), 李璐,宣慧玉,LILu,XUAN Hui-yu(西安交通大学管理学院,西安,710049)系统工程理论与实践
Systems Engineering —Theory & Practice2011,31(9)
1.Germann T C;Kadau K;Longini I M Mitigation strategies for pandemic influenza in the United States[外文期刊] 2006(15)2.Castillo-Chavez C;Castillo-Garsow C W;Yakubu A A Mathematic models of isolation and quarantine[外文期刊] 2003(21)3.Eubank S;Guclu H;Kumar V S A Modelling disease outbreaks in realistic urban social networks[外文期刊] 2004(6988)4.Milne G J;Kelso J K;Kelly H A A small community model for the transmission of infectious diseases:Comparison of schoolclosure as an intervention in individual-based models of an influenza pandemic 2008(12)5.蔡全才 定量评价SARS干预措施效果的传播动力学模型[期刊论文]-中华流行病学杂志 2005(03)
6.Longini I M;Nizam A;Xu S F Containing pandemic influenza at the source[外文期刊] 2005(5737)
7.Ferguson N M;Cummings D A T;Cauchemez S Strategies for containing an emerging influenza pandemic in Southeast Asia[外文期刊] 2005(7056)
8.Klemm K;Eguíluz V M Highly clustered scale-free networks 2002(03)
9.Pastor-Satorras R;Vespignani A Epidemic dynamics in finite size scale-free networks 2002(03)10.Kiss I Z;Green D M;Kao R R Disease contact tracing in random and clustered networks 2005(1570)11.Eames K T D;Keeling M J Contact tracing and disease control[外文期刊] 2003(1533)
12.Albert R;Jeong H;Barabási A L Error and attack tolerance of complex networks[外文期刊] 2000(6794)13.Vannucchi F S;Boccaletti S Chaotic spreading of epidemics in complex networks of excitable units 2004(01)14.Xu Z;Sui D Z Effect of small-world networks on epidemic propagation and intervention 2009(03)
15.Hayashi Y;Minoura M;Matsukubo J Oscillatory epidemic prevalence in growing scale-free networks[外文期刊] 2004(01)16.Riley S;Fraser C;Donnelly C A SARS in Hong Kong:Impact of public health transmission dynamics of the etiological agent ofinterventions 2003(20)
17.May R M;Lloyd A L Infection dynamics on scale-free networks[外文期刊] 2001(06)
18.Kuperman M;Abramson G Small world effect in an epidemiological model[外文期刊] 2001(13)19.Newman M E J Spread of epidemic disease on networks 2002(01)
20.Klemm K;Eguíluz V M Growing scale-free networks with small-world behavior 2002(05)21.Nasell Ⅰ Stochastic models of some endemic infections[外文期刊] 2002(01)
22.Lloyd A L;May R M Epidemiology:How viruses spread among computers and people[外文期刊] 2001(5520)23.Keeling M J;Eames K T D Networks and epidemic models 2005(04)
24.Halloran M E;Longini I M;Nizam A Containing bioterrorist smallpox[外文期刊] 2002(5597)
25.Mossong J;Hens N;Jit M Social contacts and mixing patterns relevant to the spread of infectious diseases 2008(03)26.Valle S Y D;Hyman J M;Hethcote H W Mixing patterns between age groups in social networks 2007(04)
27.Fu Y C Measuring personal networks with daily contacts:A single-item survey question and the contact diary 2005(03)28.Read J M;Eames K T D;Edmunds W J Dynamic social networks and the implications for the spread of infectious disease[外文期刊] 2008(26)
29.Kiss I Z;Green D M;Kao R R The effect of network mixing patterns on epidemic dynamics and the efficacy of disease contacttracing 2008
30.Kiss I Z;Green D M;Kao R R Infectious disease control using contact tracing in random and scale-free networks[外文期刊]2006(06)
31.Tsimring L S;Huerta R Modeling of contact tracing in social networks 2003(1-2)
32.Kermack W O;McKendrick A G Contributions to the mathematical theory of epidemics,part I[外文期刊] 192733.Keeling M J The implications of network structure for epidemic dynamics[外文期刊] 2005(01)
35.Liljeros F;Edling C R;Amaral L A N Sexual networks:Implications for the transmission of sexually transmitted infections2003(02)
36.Wallinga J;Edmunds W J;Kretzschmar M Perspective:Human contact patterns and the spread of airborne infectious diseases[外文期刊] 1999(09)
37.Castillo-Chavez C;Yakubu A A Dispersal,disease and life-history evolution[外文期刊] 2001(01)
38.Wang W;Mulone G Threshold of disease transmission in a patch environment[外文期刊] 2003(01)
39.Cohen R;Havlin S;Ben-Avraham D Efficient immunization of populations and computers 2003(24)
40.Pastor-Satorras R;Vespignani A Immunization of complex networks 2002(03)
41.Callaway D S;Newman M E J;Strogatz S H Network robustness and fragility:Percolation on random graphs[外文期刊] 2000(25)
42.Toroczkai Z;Guclu H Proximity networks and epidemics[外文期刊] 2007(01)
43.Koopman J Modeling infection transmission 2004
44.Ball F;Neal P Network epidemic models with two levels of mixing[外文期刊] 2008(01)
45.Meyers L A;Newman M E J;Pourbohloul B Predicting epidemics on directed contact networks[外文期刊] 2006(03)
46.Moreno Y;Gómez J B;Pacheco A F Epidemic incidence in correlated complex networks[外文期刊] 2003(03)
47.Newman M E J;Park J Why social networks are different from other types of networks[外文期刊] 2003(03)
48.Hanski I Metapopulation theory,its use and misuse 2004(03)
49.Keeling M J;Rohani P Modeling Infectious Diseases in Humans and Animals 2007
50.Grenfell B;Harwood J (Meta)population dynamics of infectious disease 1997(10)
51.Gonzalez M C;Hidalgo C A;Barabási A L Understanding individual human mobility patterns[外文期刊] 2008(7196)
52.Lajmanovich A;Yorke J A A deterministic model for gonorrhea in a nonhomogeneous population 1976(3/4)
53.Riley S Large-scale spatial-transmission models of infectious disease[外文期刊] 2007(1)
54.Hwang D U;Boccaletti S;Moreno Y Thresholds for epidemic outbreaks in finite scale-free networks 2005(02)
55.Pastor-Satorras R;Vespignani A Epidemic dynamics and endemic states in complex networks[外文期刊] 2001(06)
56.Pastor-Satorras R;Vespignani A Epidemic spreading in scale-free networks[外文期刊] 2001(14)
57.Barabási A L Scale-free networks:A decade and beyond[外文期刊] 2009(5939)
58.Moore C;Newman M E J Epidemics and percolation in small-world networks 2000(05)
59.Kleczkowski A;Grenfell B T Mean-field-type equations for spread of epidemics:The 'small world' model 1999(1/2)
60.Boccaletti S;Latora V;Moreno Y Complex networks:Structure and dynamics[外文期刊] 2006(4-5)
61.Hufnagel L;Brockmann D;Geisel T Forecast and control of epidemics in a globalized world[外文期刊] 2004(42)
62.Colizza V;Barrat A;Barthélemy M The role of the airline transportation network in the prediction and predictability ofglobal epidemics[外文期刊] 2006(07)
63.Watts D J;Muhamad R;Medina D C Multiscale,resurgent epidemics in a hierarchical metapopulation model 2005(32)
64.Colizza V;Vespignani A Epidemic modeling in metapopulation systems with heterogeneous coupling pattern:Theory andsimulations[外文期刊] 2008(03)
65.Cross P C;Johnson P L F;Lloyd-Smith J O Utility of R-0 as a predictor of disease invasion in structured populations2007(13)
66.Isham V Stochastic Models for Epidemics 2005
67.McKendrick A G Applications of mathematics to medical problems 1926
68.Rouderfer V;Becker N Assessment of two-dose vaccination schedules:Availability or vaccination and catch-up[外文期刊]1995(01)
69.Hoppensteadt F Mathematical Theories of Populations:Demographics,Genetics and Epidemics 1975
70.Fraser C;Donnelly C A;Cauchemez S Pandemic potential of a strain of influenza A(H1N1):Early findings[外文期刊] 2009(5934)
71.Nu(n)o M;Chowell G;Gumel A B Assessing the role of basic control measures,antivirals and vaccine in curtailing pandemicinfluenza:Scenarios for the US,UK and the Netherlands 2007(14)
本文链接:http://d.g.wanfangdata.com.cn/Periodical_xtgcllysj201109015.aspx