对讲机原理

TRA08型调频收音机,对讲机基本功能如下:

(1)按下FM键,调频收音机功能,接收调频电台。

(2)复位FM键,对讲机功能,共有4个频率,分别为F1,F2,F3,F4,可通过面板上的按键选择。

超外差单声道和立体声调频收音机组成结构框图如下:

图1单声道调频收音机组成结构框图

图2 立体声调频收音机组成结构框图

调频无线广播,采用调频的调制方式,用音频信号去控制高频载波的瞬时频率,使原为等幅恒频的高频载波信号的瞬时频偏随调制信号的幅度的变化而变化。一般规定调频广播的载波频率范围为87-108MHz。

音频放大器,将话筒送来的信号进行放大,达到一定幅度后去控制频率调制器,实现调频。

频率调制器中有可变电抗元件,其电容量随着两端所加电压的变化而改变。用音频信号去控制可变电抗元件两端的电压,使可变电抗元件的电抗值(一般是指电容)随着音频信号幅度的改变而做周期性变化,可变电抗元件同时又是高频

载波振荡器谐振回路的一部分,当可变电抗元件的电容值发生变化后,高频载波的瞬时频率也会发生相应的变化,从而实现频率调制。

高频载波振荡器产生的高频载波幅度通常很小,需要经过高频电压放大和高频功率放大后,才能推动天线,增加发射距离。

天线匹配回路使功率的输出端和天线的输入回路相匹配,使功放的输出功率能够最大限度的传输给天线,以提高效率。

图3 单声道调频发射机组成结构框图

图4立体声调频发射机组成结构框图

KA22425D单片集成电路:工作电压2-7.5V,Vcc=6V,RL=8Ω时,输出功率为500mW。电路内设有调谐指示LED驱动器,电子音量控制器,还有FM静噪功能。

KA22425D采用28脚双列扁平封装,管脚排立如下图所示:

图5 KA22425D管脚排立示意图

原理图分析:

(1)调幅(AM)部分不使用,因此相关引脚接地处理。如16脚(调幅中放输入),20脚(中放地),18脚(接地),19脚(调谐指示)均接地处理。

15脚是调频和调谐波段选择,低电平选择调频,高电平选择调幅,通过电容C37接地,选择调频接收方式。11脚(空),1 。

5脚(调幅本振),10脚(调幅高放),8脚(基准电压)均接地。 1脚(静噪)经电容C36滤波后接地。

天线接收到的调频广播信号,经过电容C28(100pF)交流耦合后,进入芯片的第12脚(调频高放)进行高频放大,放大后的高频信号进入芯片的第9脚,低9脚外接电感L9,可变电容CBM,微调电容组成调谐回路,进行频道选择,然后进入芯片的内部进行混频。当按下开关SW4时(TR位置),电容C29接入谐振回路,谐振回路的总电容增加,谐振频率下降,选择对讲机进入对讲接收频道范围(74M-86M);没按下开关SW4时(FM位置),对讲机处于FM频道接收范围(87M-108M)。

第7脚是调谐本振输入端,外接电感L10,可变电容CBM,微调电容,C32

组成调谐回路,与内部电路一同构成本振振荡回路。当按下开关SW4时(TR位置),电容C31接入谐振回路,谐振回路的总电容增加,本振振荡频率下降,选择对讲机进入对讲接收频道范围;没按下开关SW4时(FM位置),本振振荡频率较高,对讲机处于FM频道接收范围。

本振信号与高频输入信号在芯片内部进行混频后的中频信号(中心频率是10.7M)从芯片的14脚输出。首先经过压电陶瓷滤波器CF1(中心频率是10.7M)滤波后,得到较纯净的中频信号送到晶体管Q5组成的共射极放大电路中进行放大(电压增益大约为20dB),电阻R24是电压并联负反馈,起稳定输出电压的作用。放大后的信号从晶体管集电极输出后,再次经过压电陶瓷滤波器CF2(中心频率是10.7M)滤波后,送到芯片的第17脚(调频中放输入端),在芯片内部进行中频放大,然后进入内部的FM鉴频器进行鉴频,2脚外接10.7M的压电陶瓷鉴频器CF3,调频信号经过鉴频后从芯片的第23脚输出,电容C41(0.022uF)是高频滤波电容。

23脚解调出来的音频信号进入芯片的24脚(音频信号输入端),电容C40(10uF)是音频耦合电容,在芯片内部经过低频电压放大和低频功率放大后,从芯片的27脚输出,推动扬声器或者外接耳机。电容C42(10uF)是低频纹波滤波电容,26脚(Vcc)外接电源,电容C44(220uF)是低频滤波电容,并有储能作用,电容C30(0.022uF)是高频滤波电容。电容C43(0.1uF),C45(0.1uF)是高频滤波电容。28脚经电容C45滤波后接地。电容C46(220uF)是音频耦合电容,并具有储能作用,在输出信号的负半周起到补偿电源的作用,使功放的输出信号失真减小。

电位器VOL(50K)调节芯片第4脚(电子音量调节)的直流电平高低来控制收音机音量的大小。电容C48(10uF)是电源的低频去耦电容,电容C47(0.022uF)是电源的高频去耦电容。

AGC和AFC控制电路:

KA22425D的AGC(自动增益控制)电路由芯片的内部电路和外接在第21脚,22脚的电容C38,C39组成,增大电容C38,C39可增加AGC的控制深度,最大控制范围可达45dB。AFC(自动频率微调)电路由芯片的内部电路和外接在21脚,6脚的电容C33,电阻R26组成,作用是使本振信号和输入调频

信号之间的固定频差保持在10.7M上,使调频波段接收稳定。

KA22425D的极限参数:

TA=25 C

电参数 Vcc=6V TA=25 C f=96MHz ∆f=±22.5KHz fm=1KHz 调频:

KA22425D的管脚直流工作电压

TRA-08发射机电路:

TRA-08的发射机电路,有晶体管分立电路直接调频,变容二极管调频,功率放大,功率推动,天线匹配回路,发射天线等基本电路模块组成。

工作原理:

电池提供6V的直流电源电压,当按键SW1按下(TR端闭合)后,给发射机电路供电,电容C6(0.022uF),C7(10uF),C4(0.022uF),C5(220uF)和电感L4(47uH)组成π型滤波网络,C4,C6是高频去耦,C5,C7是低频去耦,并且有储能作用。

电容C11(0.022uF),C12(10uF),C9(0.022uF),C10(220uF)和电感L4(47uH)组成π型滤波网络,C11,C9是高频去耦,C12,C10是低频去耦,并且有储能作用。

话筒(MIC)采集到的声音信号,通过耦合电容C25(10uF),送到晶体管Q4(9014)组成的音频电压放大电路中进行放大,C23(10uF)是音频放大后输出的耦合电容,R20,R21是话筒的直流偏置电阻,驻极体话筒需要有直流偏置电压才能采集到声音信号,R21既是话筒的直流偏置电阻,又是话筒的负载电阻,增加电阻值,采集到的音频信号输出就增大,但是不能无限地增加。电容C26,C27是直流滤波电容,晶体管Q4(9014)组成的是共射极放大电路,电阻R18构成电压并联负反馈,稳定输出电压。电容C24对输出的音频信号进行高频去

耦。电阻R17是隔离电阻,通过该电阻将音频调制信号加到变容二极管D1的两端,同时防止高频信号对低频电压放放大器的反射,隔离电阻R17应该取的比较大,在这里去100K。

晶体管Q3(2SC3355),C15,C14,L7,L8,C19,C16,C17,D1,C20,R12,R13,R14,R15,C22,C21,SW2,SW3等组成了电容三点式高频振荡电路。其中电容C15,C14是正反馈电容,原来的图上C14=6.8pF,C15=24pF

正反馈系数F=

C1524

=≈0.8,会产生两个问题:

C15+C1424+6.8

1.反馈系数过大,输出振荡信号幅度大,失真大,经过后两级放大后,输出功率较大,可能会使最后一级的功放管发烫。

2. 振荡信号的频率较高,一般总大于80M,而为了防止和校园广播信号相互干扰,我们需要把对讲机的发射频率调在74M左右,因此需要增大电容C15,C14,同时减小正反馈系数,所以修正后电容C14=47pF,C15=47pF。

相应的对讲机接接收时的调谐电容也要调整,使接收频率也能达到74M左右,因此电容C29,C31都改成24pF。

振荡频率主要由C15,C14,L7,以及变容二极管D1(型号是BB910)组成,C19是交流耦合电容,基本不影响振荡频率。电容C20是高频旁路电容,对高频信号交流接地,对低频的音频信号开路。电阻R24是直流反偏电压的隔离电阻。变容二极管必须工作在直流反偏电压下,才能用调制信号去控制结电容的变化。

经过晶体管Q4放大后的音频调制信号加在变容二极管D1两端,控制变容二极管D1的结电容的变化,从而控制高频振荡器的振荡频率,实现调频。开关SW2,SW3通过切换可以改变变容二极管的直流反偏电压,就会产生不同的振荡中心频率,从而实现发射的调频信号频率的切换。

对讲机的发射频率共有2个。

当开关SW2闭合后,开关左边闭合,开关SW3未按下,开关右边闭合,此时变容二极管的阳极直流电压计算如下:

Vd=

R14//R16+R13

⨯Vc

R14//R16+R13+R15

其中Vc是给振荡器和音频信号放大器提供的直流电压,根据下面的分析

Vc=4.55V。

将元件数值带入计算得到,变容二极管的阴极电压为Vc=4.55V Vd=0.1839V,因此变容二极管的直流反偏电压为4.55-0.1839=4.366V。

当开关SW1复位,开关右边闭合,开关SW3按下,开关左边闭合,此时变容二极管的阳极直流电压计算如下:

Vd=

(R13+R15)//R14R15

⨯⨯Vc

(R13+R15)//R14+R16R15+R13

将元件数值带入计算得到,Vd=0.091V,变容二极管的阴极电压为Vc=4.55V 因此变容二极管的直流反偏电压为4.55-0.091=4.459V。

电感L7(47uH)是高频扼流圈,可以为晶体管的射极提供较大的直流电流,电阻R7提供电压并联负反馈,可以稳定振荡信号,减少振荡信号的失真。电阻R11为变容二极管的阴极提供直流偏置电压。电容C17(10uF),C16(0.022uF)分别是振荡器直流电压的低频和高频去耦电容。

稳压管TL431是三端电源稳压芯片,内部有一个2.5V的参考电压,可等效为一个稳压二极管使用,可参考相应的PDF,输出电压可调。在本电路中输出电压为2.5⨯(1+

R9

)≈4.55V,给振荡器和音频信号放大器提供直流电压,由于R10

TL431的输出电压比较稳定,可以使高频振荡器的振荡频率不随电源电压的变化而发生偏移,从而达到稳定发射频率的目的。

被音频调制信号调制的高频振荡信号经过耦合电容C13(100pF),电阻R6耦合后加到晶体管Q2(2SC3355)和Q1(2SC3355)组成的高频宽带功率放大器中。其中Q2和Q1组成的高频功率放大器的结构完全相同,Q2级可看作是高频电压放大,Q1级可看作是高频功率放大。它们都是工作在丙类工作状态。对于输入的高频等幅调频信号,放大器工作在丙类工作状态,可以提高放大器的效率和输出功率。其中,Q2的基极电阻R5为晶体管提供负偏置电压,当高频调频信号送到Q2的基极时,晶体管BE之间的整流作用使得Vb为负电压,从而使得晶

体管Q2工作在丙类工作状态下,Q2的集电极负载由电感L5和电阻R4组成非调谐的宽带放大器,由Q2对高频信号进行一级放大,经过电容C8(2200pF)耦合后,再将输出信号推动Q1组成的下一级功率放大器电路。

晶体管Q1组成的功率放大器电路与晶体管Q2组成的功率放大器电路完全相同。

高频振荡器的输出功率大约为20mW左右,经过Q2级的放大后,其耦合电容C8端的输出功率约为100mW左右,经过Q1级的功率放大后,其输出功率约为400mW左右。

电容C3,电感L2,电容C2,电感L1,电容C1组成天线匹配网络,形式为 型(C1,L1,C2),倒L型(C2,L2),串联谐振阻抗(L2,C3)组成。实现阻抗匹配,将功率放大器的输出阻抗和天线的辐射内阻相匹配,并抵消天线的辐射电容,使功放的输出功率最大效率的传输到天线负载上,最后由天线向空中发射高频调频电波。

对讲机的工作方式:

对讲机是单工工作方式,一方呼叫的时候,另一方只能接听。按下收发开关,对讲机进入发射状态,此时对着话筒喊话,声音信号经过发射电路后就变成高频调频电波向空中传播出去,对于本次实验,发射频率应该调整在74M左右,松开收发开关进入对讲机接收状态,此时调节可变电容(调收音机调谐盘)可收到由发射机发出的声音信号。

本机集对讲机和收音机于一体,既要保证收音机的正常收听,复位SW1键(FM端闭合),使接收机的调谐频率范围在87M-108M之间,能过正常收听到调频广播电台。同时,按下SW1键(TR端闭合),使接收机的调谐频率范围在74M-86M之间,能过正常收听到对讲呼叫。(接收灵敏度最高,通信距离最远,正确调谐是关键)

发光二极管LED是做电源指示使用的,当电源接通时发光二极管点亮,关闭电源时发光二极管熄灭。

变容二极管BB910主要参数:

TL431高精度稳压管主要参数:

超高频晶体管2SC3355主要参数:

Vcbo=20V ,Vceo=12V,Vebo=3.0V Icbo≤1.0uA ,Iceo≤1.0uA, hfe=120,

ICM=100mA

fT=6.5GHz

PT=600mW

S21=9.5dB(f0=1.0GHz)

TRA08型调频收音机,对讲机基本功能如下:

(1)按下FM键,调频收音机功能,接收调频电台。

(2)复位FM键,对讲机功能,共有4个频率,分别为F1,F2,F3,F4,可通过面板上的按键选择。

超外差单声道和立体声调频收音机组成结构框图如下:

图1单声道调频收音机组成结构框图

图2 立体声调频收音机组成结构框图

调频无线广播,采用调频的调制方式,用音频信号去控制高频载波的瞬时频率,使原为等幅恒频的高频载波信号的瞬时频偏随调制信号的幅度的变化而变化。一般规定调频广播的载波频率范围为87-108MHz。

音频放大器,将话筒送来的信号进行放大,达到一定幅度后去控制频率调制器,实现调频。

频率调制器中有可变电抗元件,其电容量随着两端所加电压的变化而改变。用音频信号去控制可变电抗元件两端的电压,使可变电抗元件的电抗值(一般是指电容)随着音频信号幅度的改变而做周期性变化,可变电抗元件同时又是高频

载波振荡器谐振回路的一部分,当可变电抗元件的电容值发生变化后,高频载波的瞬时频率也会发生相应的变化,从而实现频率调制。

高频载波振荡器产生的高频载波幅度通常很小,需要经过高频电压放大和高频功率放大后,才能推动天线,增加发射距离。

天线匹配回路使功率的输出端和天线的输入回路相匹配,使功放的输出功率能够最大限度的传输给天线,以提高效率。

图3 单声道调频发射机组成结构框图

图4立体声调频发射机组成结构框图

KA22425D单片集成电路:工作电压2-7.5V,Vcc=6V,RL=8Ω时,输出功率为500mW。电路内设有调谐指示LED驱动器,电子音量控制器,还有FM静噪功能。

KA22425D采用28脚双列扁平封装,管脚排立如下图所示:

图5 KA22425D管脚排立示意图

原理图分析:

(1)调幅(AM)部分不使用,因此相关引脚接地处理。如16脚(调幅中放输入),20脚(中放地),18脚(接地),19脚(调谐指示)均接地处理。

15脚是调频和调谐波段选择,低电平选择调频,高电平选择调幅,通过电容C37接地,选择调频接收方式。11脚(空),1 。

5脚(调幅本振),10脚(调幅高放),8脚(基准电压)均接地。 1脚(静噪)经电容C36滤波后接地。

天线接收到的调频广播信号,经过电容C28(100pF)交流耦合后,进入芯片的第12脚(调频高放)进行高频放大,放大后的高频信号进入芯片的第9脚,低9脚外接电感L9,可变电容CBM,微调电容组成调谐回路,进行频道选择,然后进入芯片的内部进行混频。当按下开关SW4时(TR位置),电容C29接入谐振回路,谐振回路的总电容增加,谐振频率下降,选择对讲机进入对讲接收频道范围(74M-86M);没按下开关SW4时(FM位置),对讲机处于FM频道接收范围(87M-108M)。

第7脚是调谐本振输入端,外接电感L10,可变电容CBM,微调电容,C32

组成调谐回路,与内部电路一同构成本振振荡回路。当按下开关SW4时(TR位置),电容C31接入谐振回路,谐振回路的总电容增加,本振振荡频率下降,选择对讲机进入对讲接收频道范围;没按下开关SW4时(FM位置),本振振荡频率较高,对讲机处于FM频道接收范围。

本振信号与高频输入信号在芯片内部进行混频后的中频信号(中心频率是10.7M)从芯片的14脚输出。首先经过压电陶瓷滤波器CF1(中心频率是10.7M)滤波后,得到较纯净的中频信号送到晶体管Q5组成的共射极放大电路中进行放大(电压增益大约为20dB),电阻R24是电压并联负反馈,起稳定输出电压的作用。放大后的信号从晶体管集电极输出后,再次经过压电陶瓷滤波器CF2(中心频率是10.7M)滤波后,送到芯片的第17脚(调频中放输入端),在芯片内部进行中频放大,然后进入内部的FM鉴频器进行鉴频,2脚外接10.7M的压电陶瓷鉴频器CF3,调频信号经过鉴频后从芯片的第23脚输出,电容C41(0.022uF)是高频滤波电容。

23脚解调出来的音频信号进入芯片的24脚(音频信号输入端),电容C40(10uF)是音频耦合电容,在芯片内部经过低频电压放大和低频功率放大后,从芯片的27脚输出,推动扬声器或者外接耳机。电容C42(10uF)是低频纹波滤波电容,26脚(Vcc)外接电源,电容C44(220uF)是低频滤波电容,并有储能作用,电容C30(0.022uF)是高频滤波电容。电容C43(0.1uF),C45(0.1uF)是高频滤波电容。28脚经电容C45滤波后接地。电容C46(220uF)是音频耦合电容,并具有储能作用,在输出信号的负半周起到补偿电源的作用,使功放的输出信号失真减小。

电位器VOL(50K)调节芯片第4脚(电子音量调节)的直流电平高低来控制收音机音量的大小。电容C48(10uF)是电源的低频去耦电容,电容C47(0.022uF)是电源的高频去耦电容。

AGC和AFC控制电路:

KA22425D的AGC(自动增益控制)电路由芯片的内部电路和外接在第21脚,22脚的电容C38,C39组成,增大电容C38,C39可增加AGC的控制深度,最大控制范围可达45dB。AFC(自动频率微调)电路由芯片的内部电路和外接在21脚,6脚的电容C33,电阻R26组成,作用是使本振信号和输入调频

信号之间的固定频差保持在10.7M上,使调频波段接收稳定。

KA22425D的极限参数:

TA=25 C

电参数 Vcc=6V TA=25 C f=96MHz ∆f=±22.5KHz fm=1KHz 调频:

KA22425D的管脚直流工作电压

TRA-08发射机电路:

TRA-08的发射机电路,有晶体管分立电路直接调频,变容二极管调频,功率放大,功率推动,天线匹配回路,发射天线等基本电路模块组成。

工作原理:

电池提供6V的直流电源电压,当按键SW1按下(TR端闭合)后,给发射机电路供电,电容C6(0.022uF),C7(10uF),C4(0.022uF),C5(220uF)和电感L4(47uH)组成π型滤波网络,C4,C6是高频去耦,C5,C7是低频去耦,并且有储能作用。

电容C11(0.022uF),C12(10uF),C9(0.022uF),C10(220uF)和电感L4(47uH)组成π型滤波网络,C11,C9是高频去耦,C12,C10是低频去耦,并且有储能作用。

话筒(MIC)采集到的声音信号,通过耦合电容C25(10uF),送到晶体管Q4(9014)组成的音频电压放大电路中进行放大,C23(10uF)是音频放大后输出的耦合电容,R20,R21是话筒的直流偏置电阻,驻极体话筒需要有直流偏置电压才能采集到声音信号,R21既是话筒的直流偏置电阻,又是话筒的负载电阻,增加电阻值,采集到的音频信号输出就增大,但是不能无限地增加。电容C26,C27是直流滤波电容,晶体管Q4(9014)组成的是共射极放大电路,电阻R18构成电压并联负反馈,稳定输出电压。电容C24对输出的音频信号进行高频去

耦。电阻R17是隔离电阻,通过该电阻将音频调制信号加到变容二极管D1的两端,同时防止高频信号对低频电压放放大器的反射,隔离电阻R17应该取的比较大,在这里去100K。

晶体管Q3(2SC3355),C15,C14,L7,L8,C19,C16,C17,D1,C20,R12,R13,R14,R15,C22,C21,SW2,SW3等组成了电容三点式高频振荡电路。其中电容C15,C14是正反馈电容,原来的图上C14=6.8pF,C15=24pF

正反馈系数F=

C1524

=≈0.8,会产生两个问题:

C15+C1424+6.8

1.反馈系数过大,输出振荡信号幅度大,失真大,经过后两级放大后,输出功率较大,可能会使最后一级的功放管发烫。

2. 振荡信号的频率较高,一般总大于80M,而为了防止和校园广播信号相互干扰,我们需要把对讲机的发射频率调在74M左右,因此需要增大电容C15,C14,同时减小正反馈系数,所以修正后电容C14=47pF,C15=47pF。

相应的对讲机接接收时的调谐电容也要调整,使接收频率也能达到74M左右,因此电容C29,C31都改成24pF。

振荡频率主要由C15,C14,L7,以及变容二极管D1(型号是BB910)组成,C19是交流耦合电容,基本不影响振荡频率。电容C20是高频旁路电容,对高频信号交流接地,对低频的音频信号开路。电阻R24是直流反偏电压的隔离电阻。变容二极管必须工作在直流反偏电压下,才能用调制信号去控制结电容的变化。

经过晶体管Q4放大后的音频调制信号加在变容二极管D1两端,控制变容二极管D1的结电容的变化,从而控制高频振荡器的振荡频率,实现调频。开关SW2,SW3通过切换可以改变变容二极管的直流反偏电压,就会产生不同的振荡中心频率,从而实现发射的调频信号频率的切换。

对讲机的发射频率共有2个。

当开关SW2闭合后,开关左边闭合,开关SW3未按下,开关右边闭合,此时变容二极管的阳极直流电压计算如下:

Vd=

R14//R16+R13

⨯Vc

R14//R16+R13+R15

其中Vc是给振荡器和音频信号放大器提供的直流电压,根据下面的分析

Vc=4.55V。

将元件数值带入计算得到,变容二极管的阴极电压为Vc=4.55V Vd=0.1839V,因此变容二极管的直流反偏电压为4.55-0.1839=4.366V。

当开关SW1复位,开关右边闭合,开关SW3按下,开关左边闭合,此时变容二极管的阳极直流电压计算如下:

Vd=

(R13+R15)//R14R15

⨯⨯Vc

(R13+R15)//R14+R16R15+R13

将元件数值带入计算得到,Vd=0.091V,变容二极管的阴极电压为Vc=4.55V 因此变容二极管的直流反偏电压为4.55-0.091=4.459V。

电感L7(47uH)是高频扼流圈,可以为晶体管的射极提供较大的直流电流,电阻R7提供电压并联负反馈,可以稳定振荡信号,减少振荡信号的失真。电阻R11为变容二极管的阴极提供直流偏置电压。电容C17(10uF),C16(0.022uF)分别是振荡器直流电压的低频和高频去耦电容。

稳压管TL431是三端电源稳压芯片,内部有一个2.5V的参考电压,可等效为一个稳压二极管使用,可参考相应的PDF,输出电压可调。在本电路中输出电压为2.5⨯(1+

R9

)≈4.55V,给振荡器和音频信号放大器提供直流电压,由于R10

TL431的输出电压比较稳定,可以使高频振荡器的振荡频率不随电源电压的变化而发生偏移,从而达到稳定发射频率的目的。

被音频调制信号调制的高频振荡信号经过耦合电容C13(100pF),电阻R6耦合后加到晶体管Q2(2SC3355)和Q1(2SC3355)组成的高频宽带功率放大器中。其中Q2和Q1组成的高频功率放大器的结构完全相同,Q2级可看作是高频电压放大,Q1级可看作是高频功率放大。它们都是工作在丙类工作状态。对于输入的高频等幅调频信号,放大器工作在丙类工作状态,可以提高放大器的效率和输出功率。其中,Q2的基极电阻R5为晶体管提供负偏置电压,当高频调频信号送到Q2的基极时,晶体管BE之间的整流作用使得Vb为负电压,从而使得晶

体管Q2工作在丙类工作状态下,Q2的集电极负载由电感L5和电阻R4组成非调谐的宽带放大器,由Q2对高频信号进行一级放大,经过电容C8(2200pF)耦合后,再将输出信号推动Q1组成的下一级功率放大器电路。

晶体管Q1组成的功率放大器电路与晶体管Q2组成的功率放大器电路完全相同。

高频振荡器的输出功率大约为20mW左右,经过Q2级的放大后,其耦合电容C8端的输出功率约为100mW左右,经过Q1级的功率放大后,其输出功率约为400mW左右。

电容C3,电感L2,电容C2,电感L1,电容C1组成天线匹配网络,形式为 型(C1,L1,C2),倒L型(C2,L2),串联谐振阻抗(L2,C3)组成。实现阻抗匹配,将功率放大器的输出阻抗和天线的辐射内阻相匹配,并抵消天线的辐射电容,使功放的输出功率最大效率的传输到天线负载上,最后由天线向空中发射高频调频电波。

对讲机的工作方式:

对讲机是单工工作方式,一方呼叫的时候,另一方只能接听。按下收发开关,对讲机进入发射状态,此时对着话筒喊话,声音信号经过发射电路后就变成高频调频电波向空中传播出去,对于本次实验,发射频率应该调整在74M左右,松开收发开关进入对讲机接收状态,此时调节可变电容(调收音机调谐盘)可收到由发射机发出的声音信号。

本机集对讲机和收音机于一体,既要保证收音机的正常收听,复位SW1键(FM端闭合),使接收机的调谐频率范围在87M-108M之间,能过正常收听到调频广播电台。同时,按下SW1键(TR端闭合),使接收机的调谐频率范围在74M-86M之间,能过正常收听到对讲呼叫。(接收灵敏度最高,通信距离最远,正确调谐是关键)

发光二极管LED是做电源指示使用的,当电源接通时发光二极管点亮,关闭电源时发光二极管熄灭。

变容二极管BB910主要参数:

TL431高精度稳压管主要参数:

超高频晶体管2SC3355主要参数:

Vcbo=20V ,Vceo=12V,Vebo=3.0V Icbo≤1.0uA ,Iceo≤1.0uA, hfe=120,

ICM=100mA

fT=6.5GHz

PT=600mW

S21=9.5dB(f0=1.0GHz)


相关文章

  • 电工基础实训指导书
  • 电工基础 实训指导书 编写:马 艳 审核:孙 超 武汉交通职业学院机电工程学院制 二○一三年五月 目 录 1 实训目的............................................................. ...查看


  • 半双工调频无线对讲机实验报告
  • 实验十九 半双工调频无线对讲机 一.实验目的 1. 在模块实验的基础上掌握调频发射机.接收机,整机组成原理,建立调频系统概念. 2. 掌握系统联调的方法,培养解决实际问题的能力. 二.实验内容 1. 完成调频发射机整机联调. 2. 完成调频 ...查看


  • 调频对讲机参考
  • 1调频对讲机电路原理与框图 无线对讲机作为一种简单的通信工具,由于它不需要中转站和地面交换机站支持,就可以进行有效的移动通信,因此深受人们的欢迎.目前,它广泛应用于生产.保安.野外工程等领域的小范围移动通信工程中. 无线对讲机技术是很多无线 ...查看


  • 嵌入式系统课程设计报告
  • 课程设计 课程设计报告 题 目: 基于ARM 的楼宇对讲系统设计 班 级: 姓 名: 学 号: 指导教师: 成 绩: 电子与信息工程学院 信息与通信工程系 目 录 摘要 ................................... ...查看


  • 简易调频对讲机
  • 工作原理 对讲机的工作原理如下: 1.发射部分: 锁相环和压控振荡器(VCO)产生发射的射频载波信号,经过缓冲放大,激励放大.功放,产生额定的射频功率,经过天线低通滤波器,抑制谐波成分,然后通过天线发射出去. 2.接收部分: 接收部分将来自 ...查看


  • 通信原理试题库1
  • 通信原理试题库 一.填空题(每空1分) 1.习惯上,常把周期性的.有规则的有害信号叫做干扰,而把其他有害的随机干扰叫做随机噪声. 2.噪声分为接收机内部噪声和外部噪声两大类.而外部噪声又可分为和人为噪声两大类. 3.按照对信号处理的特征和体 ...查看


  • 双工对讲机课程设计(带目录)
  • 评阅意见: 电子技术课程设计报告 学 院: 湖南文理学院 专业班级: 学生姓名: 指导教师: 完成时间: 成 绩: 评阅教师日期 目 录 一. 设计要求 ........................................... ...查看


  • 楼宇门铃原理图
  • 目前很多的高层住宅都使用了对讲门铃了,在频繁使用中,门铃会出现一些小毛病,本文从对讲门铃的基本原理入手,介绍其常见故障的检修方法. 工作原理 楼宇对讲门铃系统采用较多的分立元件,电路比较复杂,但如果有了原理图,维修操作就容易了.图1所示的是 ...查看


  • 对讲机行业市场价格分析报告
  • 深圳中企智业投资咨询有限公司 http://www.cmern.com 深圳中企智业投资咨询有限公司 对讲机行业市场价格分析 (最新版报告请登陆我司官方网站联系) 公司网址: www.cmern.com 1 目录 对讲机行业市场价格分析 . ...查看


热门内容